不同刈割时间对青贮玉米生物量和品质的影响

雷艳芳¹, 王仪明^{2,3}, 常伟³, 李俊诚³, 魏臻武⁴

(1 光明食品(集团)有限公司,上海 200040;2 甘肃农业大学农学院,兰州 730100;3 上海鼎赢农业有限公司,上海 202176;4 扬州大学草业科学研究所,扬州 225009)

【摘 要】研究了上海崇明地区不同刈割时间对青贮玉米品种生物量、干物质、营养成分和纤维含量的影响。结果表明:随着刈割时间的推迟,不同青贮玉米品种全株生物量均呈现先上升后下降的趋势。3 个青贮玉米品种在不同刈割时间的生物量差异显著,平均生物量由高到低依次为: '耀青 3 号'〉'登海 11 号'〉'雅玉 8 号'。'雅玉 8 号'生物量的高峰值出现在 8 月 6 日和 8 月 7 日,'耀青 3 号'生物量的高峰值出现在 8 月 2 日,'登海 11 号'生物量的高峰值出现在 8 月 5 日和 8 月 7 日。刈割时间对 3 个青贮玉米全株干物质含量有显著影响,随着收获时间的推迟,干物质含量呈增加趋势。青贮玉米的淀粉、粗蛋白和粗脂肪含量随着收获时间的变化差异显著,淀粉含量最高峰在 8 月 23 日,为 36.7%;粗蛋白含量最高峰在 8 月 17 日,为 7.87%;粗脂肪含量最高峰在 8 月 18 日,为 4.38%。不同阶段的酸性洗涤纤维和中性洗涤纤维含量存在显著差异,3 个青贮玉米平均相对饲用价值在 8 月 7 日达到最高,为 152.34%。主成分分析表明,生物量和干物质的累计贡献率达到 74.741%,收获时间为 8 月 9 日时主成分的综合得分最高。

【关键词】青贮玉米; 上海崇明; 刈割时间; 生物量; 品质; 主成分分析;

【中图分类号】S513.09 【文献标识码】A 【文章编号】1000 — 3924(2016)04 — 045 — 05

近年来,随着我国农业产业结构的调整以及畜牧业的蓬勃发展,尤其是反当动物生产在畜牧业生产中所占比例不断增加,优质青贮饲料的紧缺问题日益突出^[1]。青贮玉米营养价值高、单位面积生物学产量较高,具有气味芳香、柔软多汁、适口性好,原料中营养成分保存多、损失少等特点,是反耸动物一年四季特别是冬春季节的优良饲料^[2]。青贮玉米在生产和利用上具有较大的潜力,不仅可以满足奶牛、肉牛养殖业快速发展的饲草料需求,也是解决我国粮食供需矛盾,实现粮饲有效性供给的较好途径。^[3]

我国青贮饲料的研究多注重其技术研究,关于北方地区青贮饲料的调制以及加工等研究报道较多,而对南方地区青贮饲料的生产技术和品质研究较少^[4-5]。国内也有一些针对生产实践中青贮饲料的研究:郝玉兰等^[6]研究了北京地区青贮玉米在不同生育时期产量和品质的变化规律,结果发现'北农青贮 208'的最佳收获期是在抽雄后 35—40d,'中北青贮 410'的最佳收获期是在抽雄后 40 — 50d。马金存等^[7]研究发现,收获期对青贮玉米产量、干物质、粗蛋白、粗脂肪、无氮浸出物、粗纤维含量等具有显著影响。孙连双等^[8]研究了不同收获时间对青贮玉米干物质积累的影响。闻峻等^[9]研究表明,青贮玉米随着籽粒灌浆和成熟度的提高,全株鲜物质产量及蛋白质含量有所下降。

目前,上海郊区农业呈现以种植业为主,畜牧业与渔业发展并重的特征。崇明地区种植业以水稻、麦子等粮食生产为主,

收稿日期: 2016-03-03

基金项目: 上海市科技兴农重点攻关项目[沪农科攻字 (20 15) 第 14 号一: 上海市科委项目 (1 4 DZ206500)

作者简介: 雷艳芳(1981一), 女,硕士,农艺师,从事农业种植和农业科技项目管理工作

通信作者: 魏臻武(1966一), 男, 博士, 教授, 从事牧草和饲料作物栽培技术研究

经济作物主要是棉花和油菜,其他作物有蔬菜、西甜瓜、水果、花卉等^[10]。崇明有2万头奶牛和26万头山羊,需要大量的优质 青贮饲料。本研究选用3个青贮玉米品种在上海崇明地区进行试验,研究不同火U割时间对全株青贮玉米生物量、干物质、营 养成分和纤维的综合影响,以期为青贮玉米生产提供参考,促进上海饲料产业和畜牧业的发展。

1 材料与方法

1.1 试验地概况

试验于 2013 年 3 月在上海崇明地区进行。试验地位于长江农场,东经 121009'一 121054', 北纬 31027'一 31 51', 属于亚热带,典型季风气候,温和湿润,全年日照时数 2094. 2h,年平均气温 15. 2℃,无霜期 229d,年平均降雨量 1025mm,空气相对湿度常年保持在 80%。

1.2 供试材料和试验设计

试验选择适合长江中下游地区的春玉米品种'雅玉 8 号''耀青 3 号'和'登海 11 号',于 2013 年 5 月 7 日进行穴播,行距 65cm,株距 15cm,深度 2cm,播量为 49/m²,基肥 409/m²,氮肥 309/m²,适时排灌水,人工拔除杂草。试验采用随机区组设计,小区面积 33m″(5.5mx6.om), 3 次重复,根据收获时间设计 25 个处理。收获方式采用德国进口 CLAAS 收割机,刈割后的全株玉米成为 2 一 3cm 的小段,再用挪威进口 0rkel 缠膜裹包机现场打包,添加青贮专用添加剂进行裹包青贮,发酵 60d 后测定其主要营养成分,每组试验 3 次重复。

1.3 测定指标和方法

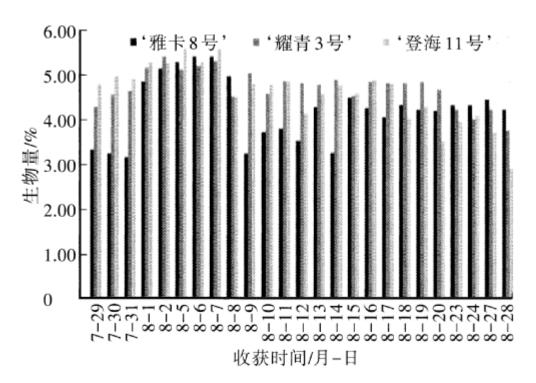
生物量(kg):3个重复的每个小区随机抽取5株,全株称鲜重,取平均值,计算每株玉米的全株重量。

干物质含量(%): 收获后的青贮玉米,按照不同小区的样品取5g称重,烘干后称其干重,计算干物质含量。

营养指标:分别取3个重复的每个小区的裹包青贮玉米5g,装入样品盒,用意大利进口的便携式近红外仪测定其粗蛋白、淀粉、粗脂肪、酸性洗涤纤维(ADF)和中性洗涤纤维(NDF)的含量,用%表示。相对词用价值(RFV,%)=(8269.8 — 72.5xADF)/NDF。

1.4 数据分析

采用 Excel2007 进行数据统计和制图, SPSS9.0 软件进行方差分析, 多重比较应用 Duncan 法。


2 结果与分析

2.1 不同刈割时间对青贮玉米生物量的影响

随着刊割时间的推迟,不同玉米品种全株生物量均呈现先上升后下降的趋势。3 个青贮玉米品种在整个收获期内的生物量差异显著,'耀青 3 号'(4.73kg)〉'登海 11 号'(4.61kg)〉'雅玉 8 号'(4.23kg)。不同刈割时间的青贮玉米的生物产量差异显著,其中'雅玉 8 号'生物量的高峰值(5.43kg)出现"月6日和"月7日,'耀青 3 号'生物量的高峰值(5.43kg)出现8月2日,'登海 11 号'生物量的高峰值(5.60kg)出现8月5日和8月7日(图1)。

2.2 不同刈割时间对青贮玉米干物质含量的影响

随刈割时间的推迟,3 个青贮玉米全株干物质含量显著增加,8 月 28 日的干物质均达到最高峰。'雅玉 8 号'干物质的变幅在 25.30% 39.97%,'耀青 3 号'干物质的变幅在 21.76% 35.70%,'登海 n 号'干物质的变幅在 21.55% 37.53% (表 1)。

图 1 不同刈割时间对青贮玉米生物量的影响

表 1 不同收获时间对青贮玉米干物质含量的影响

Table 1 Effect of different cutting time on the dry matter content of silage corn

		abic 1 Effect of thi	ierent cutting time	on the dry	matter content of si	nage corn	%
时间	'雅玉8号'	'耀青3号'	'登海 11 号'	时间	'雅玉8号'	'耀青3号'	'登海 11 号'
7月29日	$26.50 \pm 0.62 \text{ abc}$	$26.87 \pm 5.98 \text{ abc}$	21.57 ± 6.72 a	8月13日	30.93 ± 2.28 abcdef	29.07 ± 2.57 abcd	29. 13 ± 9. 90 ab
7月30日	25.13 ± 2.64 a	$28.10\pm5.94~\mathrm{abcd}$	23.87 ± 5.23 a	8月14日	31.00 ± 5.90 abcdef	29.23 ± 2.82 abed	29.07 ± 10.28 ab
7月31日	$26.60 \pm 1.23 \text{ abc}$	$27.67 \pm 1.30 \text{ abcd}$	24. 13 ± 6.64 a	8月15日	31.60 ± 2.52 abcdef	$29.67 \pm 7.16 \text{ abcd}$	31.70 ± 1.67 ab
8月1日	25.30 ± 1.57 a	$25.27 \pm 4.80 \text{ abc}$	21.97 ± 0.93 a	8月16日	$33.20\pm2.34~\mathrm{bcdefg}$	$30.47 \pm 1.56 \mathrm{bcd}$	32.77 ± 8.31 ab
8月2日	25.33 ± 0.58 a	$23.27 \pm 0.86 \text{ ab}$	22.27 ± 1.16 a	8月17日	$33.37\pm1.57~\mathrm{bcdefg}$	$31.57\pm1.17~\mathrm{bcd}$	$33.63 \pm 6.20 \text{ ab}$
8月5日	26.17 ± 1.06 ab	21.73 ± 6.74 a	24.77 ± 1.94 a	8月18日	$33.87\pm3.96~\mathrm{cdefg}$	$31.57 \pm 1.17 \text{ bcd}$	31.30 ± 3.22 ab
8月6日	25.83 ± 1.37 ab	$23.37 \pm 0.72 \text{ ab}$	26.07 ± 3.99 a	8月19日	$35.33 \pm 2.41 \text{ efg}$	32.13 ± 3.44 ed	$31.13 \pm 5.25 \text{ ab}$
8月7日	25.90 ± 1.23 ab	$25.80\pm2.88~\mathrm{abc}$	$26.40 \pm 3.99 \text{ ab}$	8月20日	$35.13\pm3.05~\mathrm{defg}$	$32.23 \pm 0.40 \text{ ed}$	32.27 ± 6.41 ab
8月8日	27.27 ± 3.89 abe	$26.80 \pm 8.17 \text{ abc}$	26.70 ± 0.87 ab	8月23日	$36.63 \pm 2.12 \text{ efg}$	$32.73 \pm 1.59 \text{ cd}$	32.20 ± 6.88 ab
8月9日	27.53 ± 2.07 abcd	$28.10 \pm 5.94 \text{ abcd}$	27.47 ± 6.12 ab	8月24日	$36.73 \pm 1.62 \text{ efg}$	33.07 ± 5.71 ed	33.27 ± 6.61 ab
8月10日	26.67 ± 0.78 abe	$28.63 \pm 8.11 \text{ abcd}$	28.23 ± 8.27 ab	8月27日	$38.10 \pm 2.10 \text{ fg}$	$31.37 \pm 3.92 \text{ bed}$	$37.07 \pm 1.23 \text{ b}$
8月11日	29.67 ± 1.63 abcde	$28.73 \pm 2.05 \text{ abcd}$	28.63 ± 7.60 ab	8月28日	39.97 ±1.79 g	$35.70 \pm 0.26 \; \mathrm{d}$	$37.53 \pm 0.86 \text{ b}$
8月12日	29.93 ± 2.94 abcde	29.03 ± 1.79 abed	28.83 ± 11.67 ab				

2.3 不同刈割时间对青贮玉米营养成分的影响

随收获时间的推迟,3个青贮玉米品种的淀粉、粗蛋白和粗脂肪含量差异显著,但品种间无显著性差异。淀粉含量最高峰在8月23日,为36.7%;粗蛋白含量最高峰在8月17日,为7.87%;粗脂肪含量最高峰在8月18日,为4.38%。

表 2 不同刈割时间对青贮玉米营养成分的影响

%

Table 2	Effect of	different	cutting	time on	the	nutrients of	silage corn
---------	-----------	-----------	---------	---------	-----	--------------	-------------

时间	淀粉	粗蛋白	脂肪	时间	淀粉	粗蛋白	脂肪
7月29日	$28.39 \pm 2.42 \text{ ab}$	6.27 ± 0.67 abc	$3.00\pm0.17~\mathrm{ab}$	8月13日	30.65 ± 1.98 abcde	$6.33\pm0.41~\mathrm{abcd}$	$3.23\pm0.14~\mathrm{bcd}$
7月30日	$27.52 \pm 2.89 \text{ a}$	$6.88 \pm 0.26 \text{ fg}$	3.22 ± 0.18 bcd	8月14日	31.70 ± 1.81 abcde	6.07 ± 0.36 a	$3.30\pm0.26~\mathrm{cd}$
7月31日	29.44 ± 3.74 abcd	$6.93\pm0.22~\mathrm{fg}$	$3.38\pm0.35~\mathrm{cd}$	8月15日	$32.00\pm2.45~\mathrm{bcdefg}$	$7.50 \pm 0.90 \ \mathrm{hi}$	4.28 ± 0.40 g
8月1日	29.32 ± 4.02 abcd	$7.18 \pm 0.41 \text{ gh}$	$3.09 \pm 0.40~\mathrm{abc}$	8月16日	33.13 ± 2.35 defghi	$7.53 \pm 0.49 \text{ hi}$	$4.21 \pm 0.39 \text{ fg}$
8月2日	29. 19 $\pm 3.05~{ m abc}$	$6.70\pm0.30~\mathrm{def}$	3.51 ± 0.32 de	8月17日	33. 10 $\pm2.$ 80 defghi	$7.87 \pm 0.44 \text{ hi}$	$3.98 \pm 0.20 \text{ f}$
8月5日	30.30 ± 4.71 abede	6.70 ± 0.17 def	$2.92 \pm 0.20 \text{ a}$	8月18日	$32.59\pm3.28~\mathrm{cdefgh}$	$6.92 \pm 0.51 \text{ fg}$	$4.38 \pm 0.19 \text{ g}$
8月6日	30.17 ± 5.35 abede	$6.90\pm0.23~\mathrm{fg}$	$3.67 \pm 0.35 \text{ e}$	8月19日	33.79 ± 2.20 efghi	6.44 ± 0.12 abcde	$3.87\pm0.31~\mathrm{fg}$
8月7日	30.77 ± 3.20 abcde	$6.90 \pm 0.46 \text{ fg}$	$3.00 \pm 0.07 \text{ ab}$	8月20日	35.33 ± 1.44 fghi	6.57 ± 0.10 cdef	$4.16 \pm 0.16 \text{ fg}$
8月8日	29.43 ± 4.41 abcde	$6.83\pm0.22~\mathrm{efg}$	$3.23\pm0.35~\mathrm{bcd}$	8月23日	$36.70 \pm 3.27 i$	6. 14 ± 0.37 ab	$4.28 \pm 0.23 \text{ g}$
8月9日	$31.30\pm2.58~\mathrm{abcdef}$	6.53 ± 0.13 bedef	$3.41 \pm 0.45~\mathrm{de}$	8月24日	$35.97 \pm 2.38 \text{ hi}$	6.27 ± 0.61 abo	$4.21\pm0.31~\mathrm{fg}$
8月10日	30.42 ± 2.05 abede	$6.93\pm0.48~\mathrm{fg}$	$3.30\pm0.26~\mathrm{ed}$	8月27日	35.71 ±4.84 hi	$6.84 \pm 0.24 \text{ efg}$	$4.41 \pm 0.23 \text{ g}$
8月11日	30.00 ± 2.89 abede	$6.77\pm0.25~\mathrm{efg}$	3.30 ± 0.11 ed	8月28日	$35.09 \pm 4.59 \text{ ghi}$	$7.48 \pm 0.32 \text{ hi}$	$4.23 \pm 0.22 \text{ fg}$
8月12日	30.66 ± 3.30 abcde	$6.03 \pm 0.05 \text{ a}$	$3.23\pm0.11~\mathrm{bcd}$				

2.4 不同刈割时间对青贮玉米纤维含量的影响

在整个收获期内,3 个青贮玉米品种间 ADF 和 NDF 含量差异不显著,但是随着刈割时间的推迟,不同阶段的 ADF 和 NDF 含量存在显著差异。其中 8 月 8 日的 ADF 含量最低,为 21.64%,显著低于其他刈割时间 ADF 含量;8 月 13 日的 NDF 含量最高,为 55.08%,显著高于其他刈割时间 NDF 含量。8 月 7 日的 RFV 最高,为 152.34%,8 月 2 一 8 日期间的 RFV 高于其他刈割时间的 RFV。

表 3 不同收获时间对青贮玉米纤维含量的影响

Table 3 Effect of different cutting time on the fiber content of silage corn							
时间	ADF	NDF	RFV	时间	ADF	NDF	RFV
7月29日	$28.54\pm0.95~\mathrm{defg}$	46.47 ± 3.62 abcde	133.71	8月13日	29. 12 ± 1. 27 fg	55.08 ± 2.59 defg	111.82
7月30日	$21.86 \pm 1.49 \text{ ab}$	$49.54\pm3.96~\mathrm{abcdefg}$	135.47	8月14日	$28.46 \pm 1.56 \ \mathrm{defg}$	$54.13\pm2.81~\mathrm{bcdefg}$	114.67
7月31日	22.60 ± 1.62 abc	48.48 ± 4.32 abcdef	137.31	8月15日	25.57 ± 1.54 abcdef	$50.73 \pm 3.60 \text{ defg}$	126.53
8月1日	$26.39\pm2.44~\mathrm{bcdef}$	45.82 ± 3.55 abcd	138.77	8月16日	25.68 ± 1.37 abcdef	49.52 ± 2.67 bcdefg	129.44
8月2日	$26.89\pm0.44~\mathrm{cdef}$	$43.23 \pm 2.11 \text{ abc}$	146.43	8月17日	$26.64 \pm 1.12 \text{ cdef}$	$50.80 \pm 1.10 \text{ defg}$	124.78
8月5日	$26.40\pm1.55~\mathrm{bcdef}$	42.62 ± 1.94 a	149.23	8月18日	$26.37 \pm 1.71 \ \mathrm{bcdef}$	$52.24 \pm 2.77 \text{ defg}$	121.78
8月6日	$26.69\pm2.78~\mathrm{cdef}$	42.92 ± 1.06 ab	147.61	8月19日	$24.49\pm0.82~\mathrm{abcdef}$	$51.10 \pm 1.94 \ \mathrm{defg}$	127.14
8月7日	24.54 ± 0.80 abcde	42.66 ± 2.06 a	152.34	8月20日	24.20 ± 1.89 abcd	$52.63 \pm 2.28 \text{ defg}$	123.90
8月8日	21.64 ± 2.74 a	$47.16\pm2.82~\mathrm{abcdefg}$	142.39	8月23日	26.70 ± 2.56 cdef	$54.10 \pm 4.48 \text{ efg}$	117.96
8月9日	$28.97\pm3.61~\mathrm{efg}$	$54.32 \pm 4.18 \text{ g}$	113.60	8月24日	24.67 ± 1.98 abcdef	$51.38 \pm 3.86 \text{ defg}$	126.18
8月10日	$28.19\pm0.83~\mathrm{defg}$	$53.48 \pm 1.51 \text{ fg}$	117.67	8月27日	$27.52 \pm 0.95 \text{ defg}$	49.89 ± 1.93 cdefg	125.92
8月11日	$27.28\pm1.11~\mathrm{def}$	$51.83\pm1.85~\mathrm{defg}$	121.43	8月28日	26.03 ± 0.57 abcdef	50.42 ± 2.69 defg	126.66
8月12日	31.92 ±3.04 g	$53.74 \pm 12.85 \text{ fg}$	112.37				

2.5 不同刈割时间对青贮玉米的综合影响

主成份分析表明: 所选的 6 个主要指标中,第 1 主成分为生物量,方差贡献率为 51.948%,第 2 主成分为干物质,方差贡献率为 22.793%,累计贡献率达到 74.741%(表 4),说明 6 个指标中的绝大部分相关信息可由这 2 个主成分来概括。计算综合得分表明,8 月 9 日收获主成分得分最高。

表 4 青贮玉米主要指标的主成分分析

Table 4 Principal component analysis of main indexes of silage corn

指标	第1主成分	第2主成分	特征值	方差贡献率/%	累计贡献率/%
生物量	-0.781	-1.000	3.117	51.948	51.948
干物质	0.932	-0.810	1.368	22.793	74.741
淀粉	0.929	-0.600	0.877	14.613	89.354
粗蛋白	0.159	0.796	0.363	6.057	95.412
粗脂肪	0.848	0.088	0.171	2.858	98.270
RFV	-0.176	0.841	0.104	1.730	100.000

3 讨论与结论

影响青贮玉米品质的因素很多,不同的青贮玉米品种营养品质差异很大,栽培技术和外界环境,如种植密度、土壤肥力、温度、光照强度、氮肥施用量、播种期以及收获期等都会影响青贮玉米的品质^[11]。收获时间不但对玉米植株的营养物质含量有直接的影响,也影响动物对饲料的利用率^[12]。本研究表明,随着刈割时间的推迟,不同玉米品种全株生物量均呈现先上升后下降的趋势。不同品种间干物质含量变化没有显著差异,但是刈割时间对 3 个青贮玉米全株干物质含量有显著影响,随着收获时间的推迟,干物质含量呈增加趋势。3 个品种的干物质含量均在收获的最后一天达到最高峰。

淀粉、粗蛋白和粗脂肪是反应青贮玉米质量优劣的重要指标,也是青贮玉米饲用营养价值的重要基础^[13]。随收获时间的推迟,3个青贮玉米品种的淀粉、粗蛋白和粗脂肪含量差异显著,但是品种间无显著差异。淀粉含量过高,会造成纤维素、半纤维素的消化率降低,到达小肠的瘤胃微生物蛋白质、饲料蛋白质会减少。全株收获早,养分含量高,适口性好,但由于植株含水量高,干物质即养分总量少。

ADF 含量与饲草干物质的消化率有关,ADF 含量高则消化率低,ADF 含量低则消化率高。NDF 是纤维性的植物细胞壁成分,饲草中 NDF 含量的高低影响反当动物的自由采食量,适量的 NDF 含量对维持瘤胃正常的发酵功能具有重要意义^[14]。本试验表明,3 个青贮玉米品种间在整个收获期内 ADF 和 NDF 含量差异不显著,但是随着刈割时间的推迟,不同阶段的 ADF 和 NDF 含量存在显著差异。

对生物量、干物质、淀粉、粗蛋白、粗脂肪和 RFV6 项主要指标进行主成分分析,结果表明,生物量和干物质的累计贡献率达到 74.741%,收获时间为 8 月 9 日时主成分的综合得分最高,所以建议收获时间不宜太晚,如果为了追求干物质,推迟收获时间,虽养分总量多,但纤维成分也多,所含有的可消化养分少,适口性差,青贮玉米的有效利用率没有充分提高。

参考文献:

- [1] 刘桂瑞,李兆林,李正洪,等. 国内外玉米青贮现状概述[J]. 当代畜禽养殖业,2013(4):51 52.
- [2] 杨国航,吴金锁,张春原,等.青贮玉米品种利用现状与发展[J].作物杂志,2013(2):13 15.
- [3] 李忠秋,刘春龙.青贮饲料的营养价值及其在反当动物生产中的应用[J].家畜生态学报,2010,31(3):95 98.
- [4] 陈柔屹,程江,张建波,等. 饲用玉米饲用品质及区域适应性分析[J]. 贵州农业科学,2010,38(6):10 12.
- [5] 吴建忠, 孙惠忠, 常伟, 等. 青贮裹包生产关键技术研究与应用[J]. 上海农业学报, 2015, 31(6):117 119.

- [6] 郝玉兰,张秋芝,南张杰,等.不同生育时期青贮玉米主要性状变化规律的研究[J].北京农学院学报,2007,22(2):6一
- [7] 马存金,刘鹏,巩常林,等.不同收获期对两种饲用玉米产量及饲用品质的影响[J].吉林农业科学,2012,37(3):31 35.
- [8] 孙连双,李东阳,张亚龙,等. 收获时期对青贮玉米产量的影响[J]. 中国农学通报,2010,26(3):157 160.
- [9] 闻峻,高玉鹏,王文杰,等.全株玉米青贮饲料在贮存期营养品质的变化规律[J].西北农林科技大学学报,2009,38(s):75 80.
- [10] 曾刚,辛晓睿. 上海崇明世界级生态岛核心竞争力建设研究[J]. 上海城市规划, 2012(6):14 18.
- [11] 彭思蛟,董召荣,李友强,等.不同饲用玉米品种产量及青贮品质比较分析[J].中国农学通报,2013,29(20):17 20.
- [12] 崔卫东,董朝霞,张建国,等.不同收割时间对甜玉米秸秆的营养价值和青贮发酵品质的影响[J].草业学报,2011,20(6):213 216.
- [13] 杨云贵,张越利,杜欣,等.2 种玉米青贮饲料青贮过程中主要微生物的变化规律研究[J]. 畜牧兽医学报,2012,43(3):397403.
- [14] 王晓娜,徐春城,温定英,等. 不同测定方法对青贮饲料中 NDF 和 ADF 含量的影响[J]. 草业科学, 2012, 29(1):144 149.