浙江省低碳经济发展效率评价

刘健

浙江省社会科学院

【摘 要】为应对全球变暖的威胁,中国需要发展低碳经济,转变经济发展方式,而这种转变需要各个地区的参与。以中国经济最为活跃、发展低碳经济较早的浙江省为研究区域,基于 2005—2012 年的统计数据,使用 DEA 模型评价低碳经济的发展效率。结果表明:浙江省整体低碳经济发展效率较高,但仍然有提高的余地,具体体现在技术效率和规模效率上。因此,浙江省需要进一步调整产业结构,注重低碳技术的研发与推广。

【关键词】DEA 模型、低碳经济、效率评价、浙江省

【中图分类号】F127 【文献标志码】A 【文章编号】1673- 291X(2014)34- 0182- 03

自 2003 年英国提出"低碳经济"以来,发展低碳经济已经成为主流。各国纷纷采取措施提高能源利用效率,降低碳排放,转变经济发展方式,实现经济由高碳向低碳过度。中国作为目前世界上最大的碳排放国,减排责无旁贷。为此,政府已经将碳约束目标写入"十二五"规划。为实现这些目标,转变中国长期以来的粗放型的经济增长方式、实现能源利用高效化、经济发展低碳化是关键。这种转变需要各个地区的参与。

浙江省位于中国东部沿海,一直是中国经济快速发展的地区,也是中国经济最具有活力的地区。在这里,新的技术、新的发展模式能迅速被消化使用。在发展低碳经济的大潮中,浙江省紧跟时代步伐,做了不少有益的尝试,取得了一定的成果,其发展低碳经济的经验和教训对其他地区也有一定的启示作用。通过 DEA 模型评价浙江省的低碳经济发展效率,根据分析的结果提出浙江省低碳经济发展的改进建议。

一、浙江省碳排放情况

从表 1 可以看出,从 2005—2012 年间,浙江省的碳排放总量—直保持增长,从 8440. 43 万吨增加到 12452. 31 万吨,增加了 47. 53%,年均增长率为 5. 71%。

碳排放总量(万吨) 碳强度(吨CO₂/万元) 年份 2005 8440.43 0.63 9530.54 2006 0.622007 10648.81 0.61 2008 10867, 49 0.56 2009 11296, 26 0.54 2010 12123.22 0.52 2011 12834.69 0.50 12452.31 2012 0.45

表1 浙江省2006—2012年碳排放情况

作者简介:刘健(1984-),男,天津静海人,助理研究员,博士,从事低碳发展、生态经济研究。

从 2005—2012 年间,浙江省的碳强度一直在降低,从 2005 年的 0.63 吨 $CO_2/万元减少到 <math>2012$ 年的 0.45 吨 $CO_2/万元,减少了 <math>28.50\%$,年均减少率为 4.68%。

二、DEA 模型

DEA 是由美国著名运筹学 A. Charnes 和 W. W. Cooper 等人于 1978 年提出旨在评价"多投入多产出"模式下决策单元间的相对有效性的方法^[1]。由于不需要预先估计参数,因此,在避免主观因素和简化运算等方面有着良好的优越性,在各个方面得到了广泛的运用^[2]。DEA 模型主要有规模报酬不变的 CCR 和规模报酬可变的 BCC 两种基本形式。采用基于投入的 CCR 模型。

假设有 n 个年度(受评估的决策单元 DMU),每个决策单元 DMU;都有 m 个输入和 s 个输出,则输入和输出向量分别为

$$X_j = (X_{1,j}, X_{2,j}, \dots, X_{m,j})^T$$

$$Y_j = (y_{1j}, y_{2j}, \dots, y_{nj})^T$$

令 V 为 X 的权系数向量, U 为 Y 的权系数向量, 以决策单元 DMU j 的评价效率为目标函数,则 CCR 模型为

$$\begin{aligned} &\max \frac{U^T Y_0}{V^T X_0} = &h_0\\ &s.t. \frac{U^T Y_i}{V^T X_i} \leq &1\\ &U > 0, V > 0, j = 1, 2, \cdots, n \end{aligned}$$

利用 Charnes-Cooper 变换并引入松弛变量则模型变换为

$$\begin{aligned} & \min |\theta - \varepsilon (\hat{\ } e^T S^- + e^T S^+)| \\ & \text{s.t. } \sum_{j=1}^n X_j \lambda_j + s^- = \theta X_0 \\ & \sum_{j=1}^n Y_j \lambda_j - s^+ = Y_0 \\ & \lambda \geqslant 0, s^+ \geqslant 0, s^- \geqslant 0, j = 1, 2, \dots, n \end{aligned}$$

其中, θ 表示决策单元 DMU₃离有效前沿面的径向优化量,这里表示浙江省低碳经济效率;s[†]和 s⁻为松弛变量,其非零时使无效 DMU₃沿水平或垂直方向延伸到有效前沿面^[3]。若 θ =1 且 s[†]=s⁻=0,则称决策单元 DMU₃为 DEA 有效,表示浙江省第 j 年的低碳经济 DEA 有效;若 θ =1 且 s[†] \neq 0 或 s⁻ \neq 0 或 s⁻ \neq 0 ,则称决策单元 DMU₃为 DEA 弱有效,表示浙江省第 j 年的低碳经济 DEA 弱有效;若 θ <1,称决策单元 DMU₃为 DEA 无效,表示浙江省第 j 年的低碳经济 DEA 无效。

为表明各年各要素的投入量或产出量是否合适,可以计算投入冗余率和产出不足率。其中投入冗余率为决策单元 DMUj 中投入各分量的松弛变量 \mathbf{s}_{ij} 与对应指标分量 \mathbf{x}_{ij} 的比值,表示该分量指标可节省的比例;同样产出不足虑为决策单元中各产出分量的松弛变量 \mathbf{s}_{ij} 与对应指标分量 \mathbf{y}_{ij} 的比值,表示该分量指标可提高的比例^[4]。

三、指标选择和数据输入

传统的用于评价经济的 DEA 模型投入指标主要为资本投入和劳动投入,产出指标为经济总量。将 DEA 模型用于评价低碳经济,则在投入指标中加入了能源投入,出指标变为低碳产出水平。各个具体指标的选取(如下表所示)。

表2 投入和产出指标

投入指标		固定资产投资 从业人员数里
		能源消费总量
产出指标	低碳产出水平	碳生产率(碳强度的倒数)

表3 浙江省各年的投入和产出数据

年份	碳生产率(万元/吨002)	固定资产投资(亿元)	从业人员数里(万人)	能源消费总量(万吨标煤)
2005	1.59	6138.39	3100.76	12031.67
2006	1.60	6771.22	3172.38	13218.85
2007	1.65	7201.85	3405.01	14524. 13
2008	1.78	7689.00	3486. 53	15106.88
2009	1.86	9056.34	3591.98	15566.89
2010	1.94	9715. 41	3636.02	16865. 29
2011	2.00	11166.02	3674.11	17827. 27
2012	2. 22	13653.95	3691.24	18076. 18

四、实证分析

将上述数据代入 DEA 模型。使用 DEAP2. 1 软件进行计算,结果(如下页表 4 所示)。

表4 浙江省2005—2012年低碳经济DEA评价结果

年份	综合效率(TE)	纯技术效率 (PTE)	规模效率(SE)
2005	1.000	1.000	1.000
2006	0.971	0.981	0.989
2007	0.930	0. 934	0.996
2008	0.971	1.000	0.971
2009	0. 958	0. 989	0.968
2010	0.972	1.000	0.972
2011	0.957	0. 965	0.992
2012	1.000	1.000	1.000

从下页表 4 中可以看到,只有 2005 年和 2012 年实现了 DEA 有效,其余各年 DEA 无效,即浙江省 2005 年和 2012 年的低碳 经济发展是有效率的,其余各年的低碳经济发展是无效率的。从具体的数值来看,无效率各年的 DEA 效率都在 0.9 以上,表明 这些年实现 DEA 有效是较为容易的。低碳经济整体发展水平较高。

对 DEA 综合效率(TE)进行分解,可以得到纯技术效率(PTE)和规模效率(SE)。从表 4 中可以看到,在各 DEA 无效的年份中,2008年和2010年达到了纯技术效率有效,其 DEA 无效是由规模效率无效造成的。其余 4 个年份的 DEA 无效则是纯技术效率无效和规模效率无效共同导致的。

计算各年的投入冗余率,结果(见表5)。

从表 5 中可以看到,各年各投入要素的投入冗余率均较小,表明浙江省低碳经济中资源配置的效率较高。投入冗余率不为 零表明配置效率还有进一步提高的余地。

年份	投入冗余率			
	固定资产投资	从业人员数量	能源消费总量	
2005	0	0	0	
2006	0.069	0.019	0.080	
2007	0.066	0.066	0.123	
2008	0	0	0	
2009	0.011	0.031	0.011	
2010	0	0	0	
2011	0.035	0.035	0.085	
2012	0	0	0	

表5 浙江省2005—2012年各投入要素投入冗余率

五、结论和建议

通过使用 DEA 模型对浙江省的低碳经济进行评价,可以得出:浙江省整体低碳经济发展效率较高,但仍然有提高的余地。 具体体现在技术效率和规模效率上。

为进一步提高低碳经济的发展效率和水平,浙江省首先应该大力调整产业结构,淘汰落后产能,对工业技术进行升级改造,提高资源的利用效率。大力支持低碳环保产业的发展,建设生态工业园区,推动的低碳能源的使用。其次,浙江省应该注重低碳技术的研发和推广。一方面对技术研究资源进行整合,集中力量进行科技公关。同时加大对科研的投入,支持技术创新;另一方面构建新技术推广应用平台,通过实行税收、信贷等多方面的优惠,鼓励企事业单位采用低碳环保的新技术,促进新技术的推广和应用。

参考文献:

- [1]李婧,白俊红,谭清美.中国区域创新效率的实证分析——基于省际面板数据及 DEA 方法[J]. 系统工程,2008,(12):1-7.
 - [2]雷茜,基于 DEA 方法中国各省份能源效率评价及影响因素分析[J].中南财经政法大学研究生学报,2010,(6):100-108.
 - [3]杨颖. 四川省低碳经济发展效率评价[J]. 中国人口·资源与环境, 2012, (6): 52-56.
 - [4] 杨斌. 2000—2006 年中国区域生态效率研究——基于 DEA 方法的实证分析[J]. 经济地理, 2009, (7).