大国开放路径及影响研究

一一兼论"一带一路"和长江经济带战略

对空间经济绩效的影响1

陶永党¹,赵 好²

(1. 浙江省发展和改革委员会宏观经济研究所,杭州 310005; 2. 浙江工商大学,

杭州 3100018)

【摘要】:本文首次在二重开放背景下构建新经济地理动态框架,并据此分析不同的开放政策对产业集聚、经济增长和国内外居民福利的影响。研究发现对内开放有利于产业向本国集聚、促进增长并缩小区域差距,同时外国居民也可以通过分享本国增长而受益。对外开放对经济增长与社会福利的影响依赖于母国规模和国际国内一体化程度呈现不同变化,总的来说,对外开放在全球化早期有利于国内外居民福利共同提升,但若本国对内开放没有相应提升,继续推进对外开放则有可能使国内外居民都蒙受损失,此外小国若能利用好全球化的机遇,则可以实现比大国更多的福利提升。从我国区域发展实践来看,依托长江经济带,加快国内市场整合不仅是打造新的增长极的重大举措,也是深入实施以"一带一路"为统领的对外开放战略的必然要求。

【关键词】:对内开放:对外开放:经济增长:区域差距

一、引言

2008 年金融危机以来,全球主要发达国家经济增长大幅下滑,欧盟一些国家甚至陷入了比 20 世纪 30 年代"大萧条"还严重的经济衰退,由此掀起了新一轮去全球化思潮。在美国,特朗普执政以来,大力推行"本土主义"、"保守主义",并要求重谈全球贸易规则。在欧洲,英国公投脱离欧盟,并引起了大量欧洲国家加入到"脱欧"的阵营中来,这也标志着进行长达 60 年之久的欧洲一体化在与民族主义的拉锯战中败下阵来(李丹,2017)[1]。与美欧等发达经济体有所不同,在去全球化和反全球化的思潮中,党的十九大报告向世界庄严承诺"中国开放的大门不会关闭,只会越开越大。"事实上,早在 2013 年,习近平总书记就提出了"一带一路"倡议,重点围绕政策沟通、设施联通、贸易畅通、资金融通、民心相通,促进各类要素有序跨国流动、资源高效配置和市场深度融合,共同打造形成开放、均衡、普惠的区域大市场。与此同时,中国在国内也加大了区域市场的整合力度,通过实施长江经济带等一系列新的国家重大区域发展战略,加强了区域间规划、交通、物流、产业、公共服务等

¹[**作者简介**]: 陶永亮(1986-),男,新疆昌吉人,浙江省发展和改革委员会宏观经济研究所助理研究员,博士,研究方向: 产业经济、区域经济; 赵婷(1981-),女,浙江杭州人,浙江工商大学副教授,博士,研究方向: 空间经济学。

[[]基金项目]: 国家自然科学基金青年项目"空间匹配、知识密集型服务业集聚与创新型城市形成机理研究及政策效应评估" (71703151),项目负责人: 赵婷;教育部人文社会科学基金青年项目"知识密集型服务业与城市产业效率增进:基于产业空间匹配视角的理论与实证"(14YJC790178),项目负责人:赵婷;浙江省自然科学基金青年项目"产业异质性、空间匹配与浙江产业升级:KIS-制造业协同集聚引领的机理分析及对策建议"(Q146030003),项目负责人:赵婷。

一体化程度,极大的促进了国内市场的整合提升。

国际与区域经贸规则体系的重构对经济活动区位分布、经济增长以及区域差距都会产生重要的影响,这为一些国家和地区带来了巨大的机遇,但也可能带来区域发展不平衡等问题。例如,朱希伟和陶永亮(2011)^②研究发现由于中国 1978 年以来改革开放的实施,极大地推进了全球化进程,中国也从全球化过程中受益,成功地缩小了与世界发达国家之间的差距,但是与此同时,中国沿海地区和内陆地区之间的不平等却显著提升,逐渐成为政府主要考虑的问题(金祥荣等,2012)^[3]。特别地,从1985 年到 1994 年,中国沿海地区和内陆地区之间的绝对差距增长了 10 倍(Fujita and Hu,2001)^[4]。持续存在的地区差距引发了一些地方政府的忧虑,Young(2000)^[5]的研究认为一些政府甚至试图通过设置人为的区际贸易壁垒以减小区域差距。鉴于经济一体化对重塑经济地理活动的巨大影响,人们不禁要问:随着"一带一路"和长江经济带等重大区域战略的持续推进,产业在空间中的布局将会发生何种变化,这又会对经济增长带来何种影响?处于国内外不同地区的居民福利将如何变化,谁将会受损,谁又会得益?最后,国家间和同一国家内不同地区居民的福利差距将会扩大还是收敛?

新经济地理学为分析上述问题提供了一个理论框架,从研究视角上来看,现有文献对上述问题的探讨主要可以分为两类。一类是静态的多国或多地区模型,如 Krugman(1993)^[6]、Behrens et. al.(2007)^[7]:和 Zeng and Zhao(2010)^[8]等。此类模型由于是在静态框架下展开研究的,因而无法分析经济一体化的增长效应。此外,此类模型往往会得到一个共同的结论:通过改善本国基础设施来吸引产业的做法,往往是以其他国家或地区居民福利的下降为代价的,因此此类区域一体化政策也被称为以邻为壑的政策(Behrens et. al.,2007)。然而在动态框架中我们将会看到,如果通过改善本国基础设施可以集聚产业促进增长的话,那么外国则有可能通过分享更高的增长而获益。也就是说,增长本身是具有溢出性的,本国的增长可以向世界输出更多的知识和产品,其他国家便因此而受益,从而就实现了本国和外国的共同增长。我国推动实施"一带一路"倡议目的也在于此,本文的分析框架从理论上论证了这种可能的存在,并给出了相应的条件。

另一类研究是两区域动态模型,如 Martin 和 Otta-viano(1999)^[9]、Fujita and Thisse(2003)^[10]等。这类研究虽然可以分析经济集聚和增长之间的相互影响,并从动态视角考察两个地区居民福利的得失,但却无法在同一框架内分析区域间一体化和国家间一体化政策影响的异同。事实上,就中国区域经济发展而言,存在明显的国际化和对内开放特征(赵伟,2006)^[11],并且国际化和对内开放对于经济活动的空间分布、增长以及各个地区居民福利的影响差别都很大。因而需要将上述两种经济一体化区别对待。

本文的研究可以看作是以上两类研究的结合,本文首次发展了一个基于国际国内二重开放的新经济地理动态模型,并以我国"一带一路"倡议和长江经济带等重大区域战略的实施作为背景,试图在同一框架内考察以"一带一路"为代表的国际化战略和以长江经济带为代表的对内开放战略对产业空间分布和经济增长的影响,在此基础上进一步分析国际国内不同地区居民福利的损益和区域差距变化。^{©2}

二、两国三区域动态分析框架

考虑一个由母国和外国组成的经济系统,每个国家都有资本和劳动两种生产要素。母国的劳动力在两个地区平均分布,资本在区域间不均匀分布,但是在各个区域内不同劳动者之间是均匀分布的。这样我们也可以将母国资本劳动比较高的地区称为发达地区,另一个地区相对应地称为欠发达地区,如中国的东部沿海和中西部内地。同时不失一般性地假定每个居民有一单位劳动力。参照宋华盛等(2010)[12],我们消除国家间的赫克歇尔俄林比较优势,即假定母国和外国有着相同的资本劳动比。记经济系统的总人口为 L,母国人口为 θ L,这里我们根据中国和周边国家人口与市场规模情况可以假定母国为大国,即 θ >1/2;初始时期的总资本量为,则母国初始资本为 θ K₀,另外母国发达地区具有较高资本劳动比,记其初始时期资本为 κ θ K₀(κ >

²①新经济地理现有文献大多从以下两个角度考察地区平等问题:工资收入差距和地区产业规模差距(Zeng and Zhao, 2010)。在本文后面的分析中我们将会看到,一个地区居民的福利指标包含了居民财富、地区价格指数以及增长速度等因素。因而从福利角度考察区域平等问题更加全面。

1/2)。所有的劳动和资本都被用于传统产品、制造业产品和资本的生产,并且资本可以在不同地区和国家间自由流动,劳动既不能在国家间流动,也不能在地区间流动,但能在同一地区不同生产部门之间自由流动。所有的生产行为依据利润最大化原则在不同的国家和地区间进行选址决策,所有居民有着相同的偏好和生产技术。为了下文表述的方便,我们用角标 i(i=1, 2, 3)来表示关于地区 i 的变量,地区 1, 2, 3 分别对应母国发达地区、母国欠发达地区与外国。

首先考察生产方面。传统生产部门采用规模报酬不变的生产技术,生产同质产品,其生产投入只需要劳动。不失一般性地假定每一单位的劳动生产一单位的传统产品。传统产品在完全竞争的市场上出售,并且可以在不同地区间无成本的自由贸易,于是所有地区传统产品价格相同。进一步的,由传统生产部门的零利润条件,传统产品价格就等于劳动者工资 p_a=w。由此我们可以将传统产品作为计价物,有 p_a=w=1。

制造业产品通过规模报酬递增的技术进行生产,并在迪克西特-斯蒂格利茨(Dixit-Stiglitz Model,简称 D-S 模型)垄断竞争市场出售。每一种制造业产品的生产需要投入一单位资本作为固定投入,以及 β 单位的劳动力作为可变投入。因此,生产 x 单位的制造业产品的成本函数是 $\pi+\beta$ xw,其中 π 是资本的回报率, β 是每生产一单位的制造业产品所需投入的劳动力。这里的资本既可以是有形资本,也可以是无形资本。前者如某一种机器设备,后者如某一种专利等。无论资本采取何种形式,生产某种制造业产品的企业的价值都等于这一单位资本的价值。当企业家完成了创办企业所必须的资本投资以后,他就拥有了生产相对应的制造业产品的垄断权力,并且企业家可以在区域间无成本地自由迁移他的企业,也就是说企业的重置成本为零。如果企业家选择到外地进行投资设厂,那么他在外地获得的利润将会被汇回到本地。制成品可以在区域间进行贸易,遵循新经济地理学文献的传统,贸易成本采用冰山成本的形式,即企业为了在外地市场销售一单位的制成品,需要从本地区运出 $\tau>1$ 单位的产品。为了对国际贸易和国内贸易进行区分,我们假定母国与外国之间的运输成本为 τ 。 不失一般性假设 τ 。 τ 。

最后,资本由研发部门进行生产,并以劳动力作为生产投入。记 a, 为地区 i 生产一单位资本所需投入的劳动力,于是 a, 就是研发成本。关于研发成本的形式,主要有以下三点考虑:第一,研发部门能够利用的知识与资本存量之间存在正相关关系,根据 Romer(1990)[13],随着资本的积累,知识也随即得到积累,研发部门能够利用的知识越多,研发成本就越低,内生经济增长便由此获得。第二,区域之间存在着知识溢出,即一个地区的研发部门在从事研发活动时,不仅能够利用本地的知识,也能在某种程度上利用外地的知识。第三,一个地区能够被用于研发活动的知识存量,取决于该地区的人均资本,关于这一假设更详细的讨论,可以参见 Zeng and Zhu(2013)[14]。由此我们考虑如下形式的研发成本函数 a,: a,=\blacklinethinglineth

接下去我们转向分析居民的消费行为。代表性消费者的效用函数为:

$$\begin{array}{ll} U & = & \int_0^\infty \! \ln [\, C_M^{\ \mu}(\, t) \, C_A^{\ 1-\mu}(\, t) \,] e^{-\rho t} dt \ , \quad C_M(\, t) \ = \\ \left[\, \int_0^{N_i + N_2 + N_3} \! c_i^{\ 1-1/\sigma} di \, \right]^{\frac{1}{1-1/\sigma}} \end{array}$$

其中, C_{α} 是传统产品的消费数量, C_{α} 是制成品的消费数量, μ 是花费在制成品上的支出份额, ρ 是时间偏好, $\sigma > 1$ 是不同

制造业产品之间的替代弹性。N1、N2和N2分别是三个地区所生产的制造业产品的种类数量。

消费者的最优消费决策分三步来决定。首先在时间路径上,消费者需要在支出和储蓄之间分配消费。

最优的消费路径满足标准的欧拉方程: E/E=r- ρ , 其中,r是资本回报率(Martin,1999^[15]; Baldwin and Martin 2004; et. al. ^[16])。其次,根据柯布道格拉斯(C-D)效用函数的性质,消费者效用最大化意味着消费者将会把其收入的 IX 部分用于购买制成品,而将剩下部分用于购买传统产品。再次,消费者在不同种类的制成品之间最优化其支出。因此,地区 i 对地区 j 生产的一种制造业产品的全部总需求为: $d_{i,j}=\frac{\mu E_i p_j^{-\sigma} P_i^{-\sigma-1} (i \cdot j=1,2,3)}{\mu E_i p_j^{-\sigma} P_i^{-\sigma-1} (i \cdot j=1,2,3)}$ 。其中, p_{ji} 为 j 地区企业生产的产品在地区 i 销售的价格, E_i 为地区 i 的总支出, $P_i = \begin{bmatrix} \int_0^{N_i N_i} p_i^{-1\sigma} di \end{bmatrix}^{VCl-\sigma}$ 为地区 i 的价格指数。

于是一个在地区 i 从事制成品生产的企业的利润为:

$$\pi_{i} = p_{ii}d_{ii} + p_{ih}d_{ih} + p_{ij}d_{ij} - \beta(d_{ii} + \tau_{ih}d_{ih} + \tau_{ij}d_{ij})$$

$$(h, i, j = 1, 2, 3; i \neq h, j)$$
(1)

其中 τ_{ih} 为地区 i 与地区 h 之间的运输成本。将各个地区对地区 i 生产的制造业产品的需求函数带入 π_{i} ,并对 π_{i} 求利润最大化条件,可以得到: $p_{ii} = \beta\sigma/(\sigma-1)$, $p_{hi} = \tau_{hi}\beta\sigma/(\sigma-1)$, $p_{ij} = \tau_{ij}\beta\sigma/(\sigma-1)$ 。在不影响模型稳健性的条件下,选择适当的单位使得 $\beta = (\sigma-1)/\sigma$,由此 $p_{ii} = \tau_{hi}$, $p_{ij} = \tau_{hi}$, $p_{ij} = \tau_{hi}$ 。于是各个地区企业利润分别为:

$$\pi_{1} = \frac{\mu E}{\sigma K} \left[\frac{\theta s_{e}}{\lambda_{1} + \varphi_{h} \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{f} (1 - \theta)}{\varphi_{f} \lambda_{1} + \varphi_{f} \lambda_{2} + \lambda_{3}} \right]$$

$$\pi_{2} = \frac{\mu E}{\sigma K} \left[\frac{\varphi_{h} \theta s_{e}}{\lambda_{1} + \varphi_{h} \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} + \varphi_{f} \lambda_{3}} + \frac{\varphi_{h} \theta (1 - s_{e})}{\varphi_{h} \lambda_{1} + \lambda_{2} +$$

$$\frac{\varphi_{f}(1-\theta)}{\varphi_{f}\lambda_{1} + \varphi_{f}\lambda_{2} + \lambda_{3}} \right] \qquad (3)$$

$$\pi_{3} = \frac{\mu E}{\sigma K} \left[\frac{\varphi_{f}\theta s_{e}}{\lambda_{1} + \varphi_{h}\lambda_{2} + \varphi_{f}\lambda_{3}} + \frac{\varphi_{f}\theta(1-s_{e})}{\varphi_{h}\lambda_{1} + \lambda_{2} + \varphi_{f}\lambda_{3}} + \frac{(1-\theta)}{\varphi_{f}\lambda_{1} + \varphi_{f}\lambda_{2} + \lambda_{3}} \right] \qquad (4)$$

其中 λ_1 、 A_2 、 A_3 分别为三个地区的制造业份额; s_e = E_1 (E_1 + E_2)为母国发达地区支出在母国总支出中所占的比重,它也可以被看作是衡量母国收入不平等程度的一个指标。

三、三大市场的动态均衡

记母国发达地区一个企业的价值为 v_1 ,同时它也是母国发达地区一单位资本的价值,对于一个理性的投资者来说,投资进行研发活动和投资安全的资产之间是无差异的,资本市场的无套利条件意味着: $v_i = \frac{\pi_1/(\rho + g)}{\sigma_1/(\rho + g)}$ 。即一单位资本的价值等于对该资本进行投资所带来的所有运营利润的总和加上资本价值的变动。类似的条件对另外两个地区也成立: $v_2 = \pi_2/(\rho + g)$, $v_3 = \pi_1/(\rho + g)$

 $_3/$ (ρ +g)。由于资本可以在地区间无成本的流动,地区间资本市场无套利条件要求: $\upsilon_1=v_2=v_3$ 。进一步推得 $\pi_1=\pi_2=\pi_3$ 。结合(2)、(3)和(4)式,得到母国产业份额 Λ 和母国发达地区产业占母国产业份额的比重 Ω 分别为:

$$\Lambda = \theta + \left(\theta - \frac{1}{2}\right)\left(\frac{2}{1 + \varphi_h - 2\varphi_f} + \frac{1}{1 - \varphi_f}\right)\varphi_f + \frac{(\varphi_h - 1)\varphi_f}{2(1 - \varphi_f)(1 + \varphi_h - 2\varphi_f)}$$

$$\Omega = s_e + \frac{2}{1 - \varphi_h}\left(\frac{1}{\Lambda}\varphi_f - \varphi_f + \varphi_h\right)\left(s_e - \frac{1}{2}\right)$$
 (6)

于是三个地区的产业份额都可以通过(5)式和(6)式给出: $\lambda_1 = \Omega \Lambda, \lambda_2 = (1 - \Omega) \Lambda, \lambda_3 = (1 - \Lambda)$ 。

从(5)式可以看出,母国的产业份额由三部分构成:第一项为母国的规模效应;第二项为国家间的母国市场效应,对于母国来说,该项为正;第三项为基础设施效应,由于商品在母国不同地区间流通需要支付成本,而在外国市场内部流通则不需要支付成本,因而可以认为外国基础设施比母国更优,该项对母国来说为负。

下面我们转向劳动力市场。劳动力市场的出清要求劳动力总供给等于总需求,劳动力的总供给是给定的;劳动力需求来自于研发部门、制造业部门和传统部门。由于劳动力的工资已经被标准化为 1,制造业部门所需要的劳动力数量就等于其可变成本的数值。又对于一个垄断竞争的制造业生产厂商来说,其可变生产成本占总成本的比例为(σ -1)/ σ ;同时垄断竞争厂商的零利润条件意味着其收入等于成本,于是制造业部门所需要的劳动力数量为 $\mu^{E^*}(\sigma-1)/\sigma$ 。由于传统产品在地区间可以无成本的贸易,且传统产品。生产只需要劳动力投入并使用规模报酬不变的技术,那么从事传统产业生产的劳动力数量在数值上就等于传统产品的产量,也等于消费者用于传统产品的支出 $(1-\mu)^{E^*}$ 。最后,为了计算研发部门雇佣的工人数,还需要知道研发部门的生产成本。由于研发部门是完全竞争的,研发活动将会完全聚集在研发成本最低的地区。由于母国是大国(θ >1/2),不难证明所有的研发活动都将会集聚在母国进行,于是研发部门生产一单位资本的成本为 θ L/2 Λ K*。均衡时资本的价值等于其研发成本:手,更进一步可以得到研发部门使用的劳动力数量为 θ Lg/2 Λ 。至此,我们得到劳动力市场出清方程如下:

$$L = (1 - \mu)E^{w} + \frac{\mu(\sigma - 1)}{\sigma}E^{w} + \frac{\theta Lg}{2\Lambda}$$
 (7)

下面对稳定状态作一个定义: 稳定状态指的是经济系统以固定的增长率 g 增长,同时制造业在地区间的分布状态 λ_i (i=1 , 2 , 3) 也是固定的。

由上述定义并结合(7)式可得,稳定状态下 E"也是固定的常数,再由欧拉方程,得 $r=\rho$ 。各个地区的总收入等于该地区的 劳动收入加上资本收入。于是,我们可以得到母国发达地区的收入份额 s_e :

$$s_e = \frac{\Lambda + \rho\theta\kappa}{2\Lambda + \rho\theta} \tag{8}$$

容易发现 s。与母国产业份额反相关。这是因为当母国产业份额越多的时候,母国进行研发就越容易,那么资本品的价值也即资本的价值就会下降,继而资本相对于劳动收入下降,那么由资本分布不均匀产生的收入差距也将下降。

联立(5)、(6)和(8)式,我们可以得到均衡时各个地区的产业份额以及均衡时母国地区收入差距指标的解析式™。

³①由于Ω、Λ和 s。的解析式过于复杂,限于篇幅不在此列出,这并不影响我们后面的分析。

四、经济一体化与增长

长期增长由不断积累的资本所推动,随着资本的积累,制造业产品的种类不断增加,由此催生增长。

将 $E^{W} = L + \rho \theta L/2\Lambda$ 代入 (7) 式,可得均衡时的经济增长率为:

$$g = \frac{2\mu\Lambda}{\theta\sigma} - \frac{(\sigma - \mu)\rho}{\sigma} \tag{9}$$

从对外开放对经济增长的影响来看,主要有以下两种途径:第一,对外开放水平的提高会增强不同国家间的知识溢出水平,由此促进增长;第二,对外开放水平的提高会改变产业在国家间和区域间的分布,由此影响增长。本文的研究主要是沿着第二条途径展开。(9)式对 φ_f 求导得: $\frac{dg/d\varphi_f}{dg/d\Lambda} \times d\Lambda/d\varphi_f$ 。这可以看作是由两个相关过程传导作用的结果。容易证明 $\frac{dg/d\Lambda}{dg}$ 。于是我们的焦点便转化为分析对外开放对国家间产业分布的影响。对此我们有命题一。 \$\frac{3}{2}\$

命题一:对外开放对经济增长的影响,依赖于母国市场规模和国内市场一体化程度呈现不同的变化规律:

- (1) 当本国市场规模比较小且国内市场一体化程度比较低的时候 $\theta < \frac{2}{3} + \varphi_{k}$, 对外开放不利于经济增长;
- (2) 当本国市场规模比较大且国内市场一体化程度也比较高的时候 $\frac{2/(3+\varphi_h)}{4} < \theta < \frac{2(1+\varphi_h)}{4} < \theta < \frac{2(1+\varphi_h)}{4}$,随着国际贸易成本下降,经济增长率呈倒 U 型变化;
- (3) 当本国市场规模足够大且国内市场一体化程度也足够高的时候 $\frac{2(1+\varphi_h)/(3+3\varphi_h-2\sqrt{\varphi_h})<\theta<}{1}$, 对外开放始终促进经济增长。

命题一告诉我们对外开放对经济增长的影响并非是单向的,这取决于各国市场的相对规模以及国内市场一体化水平。以往 的研究认为国际化可以通过增强知识溢出促进经济增长,但是却忽略了国际化对各国产业区位重新分布的影响,而产业的区位 重新分布最终也会影响各国增长绩效。

对于中国这样的大国来说,完全可以利用自身规模优势,通过对外开放来来增强自身对全球产业和高端要素的吸引力,从而不断降低研发成本促进创新这一点已被中国改革开放以来的成就所证实,自改革开放以来中国就非常重视引进外资工作,在吸引国外产业来华投资的同时,也引入了先进的技术和管理理念,由此促进了中国本土的研发创新活动和经济增长。站在新的历史时期,我国提出以"一带一路"引领新一轮对外开放,一方面深化向西开放,打通我国经由西部地区通往中亚、欧洲的陆路通道;另一方面向东拓展海上航线、建立国际港口联盟,致力于建设海洋强国。随着陆路通道和海上通道的进一步拓展和提升,"一带一路"沿线国家的区域一体化水平将进一步提升,这就为我国依托自身市场优势、资本优势、技术优势集聚全球高端要素和产业创造了有利条件,从而有利于带动我国经济实现新一轮的增长。

五、经济一体化的福利分析

下面我们对一个更基本也更为复杂的问题展开讨论:经济一体化对不同地区居民福利会产生何种影响?在全球化的动态框

^{*}③宋华盛等(2010)在静态框架下研究了对外开放对产业区位分布的影响,本文关于对外开放对产业集聚影响的结论与他们的结论有所不同,经过 mathematica 软件采用数值模拟画图验证,我们认为由于动态效应的缺失,可能会使对经济系统的分析得出有偏结论。

架内对这一问题展开研究显然有着重要的经济和政治含义。一方面,国际经贸规则正在经历重大调整,新的区域经贸规则大量 兴起,少数国家对其他国家排他性的区域壁垒提高,对于各个经济主体来说,如何选择执行对自身有利的经济一体化政策至关 重要。另一方面,鉴于经济大国在推动建立新的经贸规则以及处理全球化问题的过程中发挥着越来越重要的作用,如先前美国 主导推动的跨太平洋战略经济伙伴关系协定、我国主导推动的"一带一路"倡议等,因此研究经济一体化对于区域合作伙伴关 系中的各成员国可能带来何种影响,对于经济大国更好地协调各成员国之间的关系也有着非常重要的意义。

然而就我们所知,目前并没有研究在涉及多边区域的动态框架内对上述问题进行回答。这可能是因为在多地区的动态框架内考察经济一体化对不同地区居民福利的影响非常复杂,经济一体化至少通过以下几种渠道对不同地区居民福利产生影响。首先,经济一体化水平的提高降低了不同区域之间的贸易成本,因而有助于各个地区消费价格指数的降低,提升居民的实际购买力。这种效应可以称之为运输成本效应。其次,在长期中贸易成本下降之后,由于母国市场效应和基础设施效应的存在,会改变各个企业在不同地区的区位分布。企业生产地的改变会影响居民购买商品的成本和消费量。这种效应可以称之为产业转移效应。再次,由于研发部门的研发效率取决于本国所拥有的知识,而本国的知识又以本国的企业为载体,因此如果本国所拥有的企业数量改变的话,本国的研发效率也将改变,这又进一步会影响经济的增长率。这种效应可以称之为增长效应。第四,研发效率的改变同时也影响着研发成本和资本的价值,进而影响居民的资本收入。这种效应可以称之为财富效应。最后,各种不同的效应之间可能存在着交互影响,例如产业转移效应可能会影响财富效应,同时,当各地区的相对支出份额发生改变之后又会反过来对各地区的商品市场需求产生影响,这又进一步影响产业的区位选择。

由此可见,经济一体化对居民福利影响的渠道和机制都非常复杂,甚至无法在一般均衡的框架下证明经济一体化对不同地区居民的福利究竟是促进的还是抑制的。然而,我们仍然可以通过借助数值模拟的方法对这一问题进行探讨,并从中得出一些有益的启示。记母国发达地区、母国欠发达地区、外国居民的福利分别为 V_1 、 V_2 、 V_3 , V_4 , V_5

$$V_{1} = \frac{\mu}{\rho(\sigma - 1)} \ln(\lambda_{1} + \varphi_{h}\lambda_{2} + \varphi_{f}\lambda_{3}) + \frac{1}{\rho} \ln(1 + \frac{\theta \kappa \rho}{\Lambda}) + \frac{\mu g}{\rho^{2}(\sigma - 1)} + C_{1}$$

$$V_{2} = \frac{\mu}{\rho(\sigma - 1)} \ln(\varphi_{h}\lambda_{1} + \lambda_{2} + \varphi_{f}\lambda_{3}) + \frac{1}{\rho} \ln(1 + \frac{\theta(1 - \kappa)\rho}{\Lambda}) + \frac{\mu g}{\rho^{2}(\sigma - 1)} + C_{2}$$

$$V_{3} = \frac{\mu}{\rho(\sigma - 1)} \ln(\varphi_{f}\lambda_{1} + \varphi_{f}\lambda_{2} + \lambda_{3}) + \frac{1}{\rho} \ln(1 + \frac{\mu}{\rho}) \ln(1 + \frac{\mu}{\rho}) + \frac{\mu}{\rho} \ln(1 + \frac{\mu}{\rho}) \ln(1 + \frac{\mu}$$

$$\frac{\theta \rho}{2\Lambda}$$
) + $\frac{\mu g}{\rho^2 (\sigma - 1)}$ + C_3

其中, C_i (i=1, 2, 2) 是常数项。

(一)对内开放的影响

首先考察对内开放对各个地区居民福利的影响。与以往研究相比,本文主要有以下两点发现,分别以命题二和命题三的形式给出。

命题二:母国国内一体化程度的提高始终有利于母国各个地区居民福利的提升,同时如果由产业向母国集聚带来的增长效应足够强的话,外国居民的福利也将获得提升。

表 1 对内开放的影响

θ	τ_h	$ au_{\mathrm{f}}$	ρ	$\frac{\partial}{\partial} \frac{\Omega}{\varphi_h}$	g %	$\frac{\partial \ V_1}{\partial \ \varphi_{\rm A}}$	$\frac{\partial V_2}{\partial \varphi_h}$	$\frac{\partial V_3}{\partial \varphi_h}$
0. 65	1. 2	1. 35	0. 2	+	1.8	0.74	0.81	-0.06
0.6	1. 2	1. 35	0. 2	+	5.8	0.74	0.84	-0.05
0. 65	1. 15	1. 35	0. 2	+	8. 7	0.68	0. 74	-0.05
0. 65	1. 2	1.3	0. 2	+	7. 7	0.85	0. 96	-0.05
0. 65	1.2	1. 35	0.15	+	12. 2	1. 22	1. 29	0. 12

如表 1 最后一列所示,母国国内市场一体化促进产业向母国集聚 $\partial \Lambda/\partial \varphi_{\Lambda} > 0$ [®],由此可能会对外国居民福利产生轻微的负面影响,但是当母国产业集聚带来的经济增长足够高时,外国居民也将通过分享母国的增长而受益,我们通过数值模拟证实了上述可能性的存在。 ^{®6}在传统的静态模型中,由于增长效应和财富效应的缺失,母国对内开放程度的提高将会使产业更多的向母国转移,对外国居民来说只有负面影响。因此,专注于提高本国基础设施水平的政策也被 Behrens et. al. (2007) 称作以邻为壑的政策。但是在动态框架中可以看到,母国通过提升国内一体化程度加快产业集聚同时产生额外的增长效应,如果增长效应足够强,外国也会因为分享到更高的增长而使福利水平提高。

我们关心的另一个问题是,虽然对内开放水平的提高可以使本国不同地区居民的福利水平都提高,但是两地居民的福利差 距将会如何变化?命题三对这一问题作出了回答。

命题三:在国内市场一体化的过程中,产业向发达地区集聚,但这并不必然扩大发达地区和欠发达地区居民之间的福利差距,反而可能促使国内区域差距收敛。

如表 1 第 5 列所示,在母国市场效应作用下,对内开放使得母国地区之间产业差距扩大 $\partial \Omega/\partial \varphi_h > 0$,但是母国内不同地区居民福利差距却收敛了 $\partial V_2/\partial \varphi_h > \partial V_1/\partial \varphi_h$ 。这颠覆了以往研究对产业集聚与区域差距之间关系的认识。对于产业集聚与区域差距之间关系的认识,大致经历了以下几个阶段:早期的研究者们简单的将产业差距和区域差距之间划了等号;再后来新经济地理动态理论发现产业向发达地区集聚有可能通过实现更高的增长而使欠发达地区居民也获利,但是依旧认为发达地区居民和欠发达地区居民的相对差距会扩大,如 Fujita and Thisse(2003)。本文的研究则在此基础上更进了一步,我们认为由国内经济一体化带来的经济集聚,不仅可以通过促进增长使得欠发达地区居民福利在绝对意义上有所提升,而且还能缩小欠发达地区与发达地区之间的相对差距。

从我国国内区域经济发展实践来看,以长江经济带为代表的区域发展战略极大地提高了国内市场一体化程度,这有利于国内生产力的优化布局和整合提升,促进经济活动进一步向各大城市群集中,提升经济运行效率,与此同时,从地区居民福利差距的角度来看,还有利于各个地区居民福利差距的收敛。也就是说,无论从动态效率角度看,还是从区域平等角度看,我国都应该继续深入推进长江经济带战略实施,大力提升国内市场一体化水平。另一方面,从对其他国家的影响来看,在动态的经济系统中,国与国之间的竞争不再是一个零和游戏,市场、资本和技术大国在国际产业竞争中可以利用自身优势获得更多的产业份额,但这并非要以其他国家居民福利损失为代价。产业集聚能够推动整个经济系统实现更高的增长,这使得所有参与全球化的国家都能通过分享高增长而获得更高的福利。

⁵④限于篇幅,证明从略,感兴趣的读者可与作者联系。

⑤表一中的第一行我们称之为基准行,以下各行通过改变其中一个参数将所得结果与第一行进行比较。另外,由于 κ 、 σ 和 μ 不是我们分析的重点,故而本文中采用数值模拟进行分析的时候,将其固定不变,取值如下 k=0.6, σ =5, μ =0.6。

(二) 对外开放的影响

关于对外开放对社会福利影响的研究由来已久,这些研究大多支持了对外贸易成本下降可以增进居民福利的假说。新经济地理静态理论研究发现,对外开放程度的提高并非总是对所有国家和地区都好,如宋华盛等(2010)研究发现当对外开放程度很低的时候,提高对外开放程度对本国各个地区居民都是有好处的,反之,当对外开放程度很高的时候,对外国居民有利,而本国居民福利则有可能受损。本文的研究在加入研发部门以后,获得了比静态分析框架更为丰富的结论,我们分别从国际国内各个地区居民福利的绝对变化和相对变化两个维度展开分析,相应的结论分别以命题四和命题五的形式给出。

命题四:当对外开放程度较低时,扩大对外开放对所有地区居民都有利;当对外开放程度较高而对内开放程度较低时,继续扩大对外开放可能会对国内外所有地区居民福利都造成损害。

与己有研究有所不同,我们的研究发现对于自身基础设施水平较低的大国,实行较高水平的对外开放政策可能对所有国家和地区都是不利的。如表 2 第 2 至 4 行所示,随着对外开放程度的提高,先是母国欠发达地区居民福利受损,继而是发达地区居民福利受损,最后可能导致本国和外国所有地区居民福利都受损。这是因为由于母国国内基础设施水平较差,当对外开放达到一定程度后,产业在进行区位选择时,基础设施效应的影响要强于市场规模效应,所以即使是市场大国也可能在全球竞争中失去产业,母国产业份额的降低又会进一步降低本国研发部门的生产率,从而增长率也随之下降,这不仅使母国居民的福利受到损失,也会对外国居民的福利产生不利影响。

命题四给我们的启示是对外开放程度的提高固然可以通过降低不同国家之间的贸易成本使得各个国家从中得到好处,然而同时也应该看到对外贸易成本的下降可能带来的其他影响。通过本文的模型可以发现,对外开放程度的提高会促使产业跨国转移,产业的这种区位再分布过程具有很强的外部性,比方说它可能影响一个地区的价格指数,也可能会通过影响研发效率来影响增长和资本收入。这些外部性的存在,使得由市场所决定的均衡跟社会最优的均衡之间存在偏离。它提醒政策制定者在考虑有关经济一体化的政策时应该审慎考虑这些可能的影响。就我国区域经济发展实践来看,"一带一路"倡议的深入实施离不开国内市场的深度整合,这是我国进一步向纵深推进对外开放的底气和动力,从这个意义上来说,以长江经济带为代表的国内区域发展战略不仅仅是打造新的区域增长极的重要举措,也是我国深化对外开放的必然要求。

θ	τ_h	τ f	ρ	$\frac{\partial \ \Omega}{\partial \ \varphi_h}$	g %	$\frac{\partial V_1}{\partial \varphi_{\lambda}}$	$\frac{\partial V_2}{\partial \varphi_h}$	$\frac{\partial \ V_3}{\partial \ \varphi_h}$
0.6	1.1	1. 35	0.18	+	9. 5	0.6	0.62	0.96
0.6	1.1	1.2	0.18		9. 2	0.01	-0.08	0.63
0.6	1.1	1. 18	0.18		8. 5	-0.29	-0.47	0.42
0.6	1.1	1. 15	0.18		6. 2	-0.95	-1.46	-0.06
0.6	1.1	1.3	0.18	+	9. 6	0.45	0.5	0.91
0.6	1. 25	1. 35	0.18	_	6. 4	-0.04	-0. 23	0.75

表 2 对外开放的影响

命题五:从各地居民福利的相对变化来看,随着国际化水平的提高,国外居民可以获得比国内居民更高的福利提升(或者更小的福利损失)。

这颠覆了小国在全球化进程中将会被边缘化的观点,对于加入全球化的小国来说,虽然其在市场、资本、技术等领域都不占优,使其面临失去产业份额的风险,但是这些国家却可以通过以下途径提升国内居民福利:一是获得了接入更大的国际市场

的机会,从而能使国内居民以更加便宜的价格获得更加丰富多样的产品;二是这些国家可以更加容易地获取丰富的知识和技术,从而有利于创新活动的开展,实现更高水平的增长;三是这些国家可以聚力发展自身特色优势的产业,并利用接入国际大市场的机会,壮大本国优势产业,实现规模经济。由于这些机会的存在,使小国在参与全球化的过程中,能够获得比大国更高的福利提升。

从"一带一路"倡议提出的背景来看,中国有巨大的市场,更有产业、商品和资本走出去的需求,沿线国家参与"一带一路"建设不仅可以扩大与中国的贸易往来,获取中国价格低廉、种类丰富的商品,还可以利用中国巨大的市场,为自身的产品打开销路,更可以利用中国优势产能走出去的机遇,发展壮大本国的产业,搭载中国发展的顺风车,从而实现对先发国家的赶超。

六、结束语

本文发展了一个基于国际国内二重开放背景的新经济地理动态框架,研究发现以"一带一路"为统领的对外开放政策和以 长江经济带为引领的对内开放政策有着显著不同的政策效应。

首先,"一带一路"倡议的深人实施有利于降低国际贸易投资壁垒,这为我国利用市场、资本和技术优势整合国际产业与高端要素资源提供了机遇,由此带动国内经济实现更高水平的增长,并促进不同国家、不同地区居民福利的共同提高。

其次,对于"一带一路"沿线一些市场规模较小国家来说,"一带一路"倡议的推进实施使其能够以更便宜的价格获得更加丰富多样的产品、更容易地获取日益丰富的知识、更好地利用国际大市场发展自身有特色优势的产业,把握好这些机遇,甚至可以帮助小国获得比大国更高的福利提升,从而实现"一带一路"沿线各国的互利共赢。

最后,以长江经济带为代表的对内开放政策有利于吸引产业向本国集聚,形成新的区域增长极,并且当对增长的促进作用 足够强时,外国也能因分享高增长而获益。除此之外,对内开放还是我国构建开放大格局的重要组成部分,这是因为高水平的 国际化必须以更高水平的国内市场一体化相配合才会成功,否则很可能会面临产业流失的风险,而使国际国内都蒙受损失。

[参考文献]:

- [1]李丹. "去全球化":表现、原因与中国应对之策[J].中国人民大学学报,2017(3):99-108.
- [2]朱希伟和陶永亮. 经济集聚与区域协调[J]. 世界经济文汇, 2011(3): 1-25.
- [3] 金祥荣,陶永亮和朱希伟,基础设施、产业集聚与区域协调[1],浙江大学学报(人文社会科学版),2012(2):148-160.
- [4] Fujita, M. and D. Hu. Regional disparity in China 1985-1994: The effects of globalization and economic liberalization[J]. The Annals of Regional Science, 2001, 35 (1): 3-37.
- [5] Young, A. The Razors Edge: Distortions and Incremental Reform in the People's Republic of China[J]. The Quarterly Journal of Economics, 2000, 115 (4): 1091-1135.
 - [6] Krugman, P. On the number and location of cities[J]. European Economic Review, 1993, 37 (2-3): 293-298.
 - [7] Behrens, K., C. Gaign6, et al. Countries, regions and trade: On the welfare impacts of economic integration

- [J]. European Economic Review, 2007, 51 (5): 1277-1301.
- [8]Zeng, D. Z. and L. Zhao. Globalization, interregional and international inequalities[J]. Journal of Urban Economics, 2010, 67 (3: 352-361.
- [9]Martin, P. and G. I. P.Ottaviano. Growing locations: ndustry location in a model of endogenous growth[J]. European Economic Review, 1999, 43 (2): 281-302.
- [10] Fujita, M. and J. -F. Thisse. Does Geographical Agglomeration Foster Economic Growth? And Who Gains and Loses from It?[J]. The Japanese Economic Review, 2003, 54 (2): 121-145.
 - [11]赵伟. 中国区域经济开放: 多层次多视点的考察[J]. 社会科学战线. 2006(6): 57-63.
 - [12]宋华盛,何力力和朱希伟.二重开放、产业集聚与区域协调[J].浙江大学学报(人文社会科学版),2010(5):104-115.
 - [13] Romer, P. M. Endogenous Technological Change [J]. Journal of Political Economy, 1990, 98 (s5): s71-s102.
 - [14] Zeng, D. -Z and Zhu, X. Shoulder-to-Shoulder Innovation in a Globalizing World[J]. Mimeo. 2013.
- [15] Martin, P. Public policies, regional inequalities and growth[J]. Journal of Public Economics, 1999, 73 (1): 85-105.
- [16] Baldwin, R. E. and P. Martin. Chapter 60 Agglomeration and regional growth, 2004. (J.V. Henderson and T. Jacques-Fran? ois. Handbook of Regional and Urban Economics[M]. Elsevier. Volume 4: 2671-2711.