太湖西岸出入湖河口氮磷消减特征*1

郭加汛^{1,2}赵耕毛^{1*}郭西亚²张海涛²邓建才²

(1. 南京农业大学资源与环境科学学院,江苏南京 210095;

2. 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,江苏南京

210008)

【摘 要】:河流水体污染物消减作用是降低其入湖通量的重要方式,为探明太湖河流氮磷污染物消减速率时空变 化特征,研究采用自主研发的原位培养装置,开展了太湖西岸出入湖河口总氮绝对消减速率(TNR ^a)、总氮相对消减 速率(TNR ^a)、总磷绝对消减速率(TPR ^a)、总磷相对消减速率(TPR ^a)的变化特征研究。结果表明:西北部和西部河流 夏、秋季 TNR ^a和 TPR ^a高于春、冬季,南部河流则为秋、冬季高于春、夏季。夏季西部和西北部河流 TNR ^a和 TPR ^a 高于南部,冬季则相反,春、秋两季空间差异不明显。颗粒态总氮(PTN)浓度及水温是 TNR 绝时空差异性的主要影 响因素。TP 浓度是 TPR ^a的季节差异性的主要原因,不同季节 TPR ^a空间差异的主要影响因素不同,春、夏、秋、冬 四季主要影响因素分别为 pH 等水体物理性质、TP 浓度和 SS 浓度、SS 浓度、TP 浓度。TNR ^a和 TPR ^a及其初始浓度 是 TNR 相和 TPR 相时空差异的主要原因。

【关键词】:河流水体; 氮磷; 消减特征; 时空特征

【中图分类号】:X522【文献标识码】:A【文章编号】:1004-8227 (2017) 09-1417-10

DOI:10.11870/cjlyzyyhj201709014

太湖是我国五大淡水湖泊之一,其流域内河道纵横交错。近年来,随着流域工农业及旅游业的迅速发展,出入湖水质均有 不同程度恶化^[1]。湖体水质恶化是流域点源、面源污染的综合反映^[2,3]。环湖河流污染物持续输入与太湖水质关系一直是研究 热点,如研究环太湖河流水质时空分布特征^[4]、氮素组成、氮磷负荷及其时空分布特征^[5~7]、人为活动对河流水质影响^[8]等, 研究太湖水质时空分布特征及其环境效应^[9,10]以及太湖污染物来源^[11,12]等,这些研究分析了环湖河流及太湖水质污染状况,阐 明了太湖水体氮磷营养盐主要来源,但对水体自净作用下河流氮磷营养盐浓度变化鲜有报道。本研究以太湖西岸主要河流为研 究对象,通过原位水体培养试验,探讨河流水体中氮、磷污染物消减速率的时空差异及其原因,为太湖环境容量评估以及污染

作者简介:郭加汛(1991~),硕士研究生,主要从事河流水环境研究. E-mail:2014103009@njau.edu.cn *通讯作者 E-mail:seawater@njau.edu.Cn

¹ 收稿日期:2017-02-13; 修回日期:2017-06-07

基金项目:水体污染控制与治理科技重大专项(2014ZX07101-011) [National Water Pollution Control and Treatment Science and Technology Major Project(2014ZX07101-011)]; 国家自然科学基金(41271213) [National Natural Science Foundation of China(41271213)]; 中国科学院重点部署项目(KZZDEW-10) [Chinese Academy of Science(CAS)Key Deployment Project(KZZDEW-10)]

物排放许可提供重要参数与理论依据。

1 材料与方法

1.1 研究区概况

太湖流域河流众多,其主要污染物是西部河流携带输入^[13],而位于太湖北部的梅梁湖、梁溪河、武进港、直湖港、大(小) 溪港、望虞河等河流为闸控河流,水流受人为调控影响,代表性较弱。研究选取与太湖西部直接相连的16条代表性河流,包括 污染严重的西部和西北部入湖河流(新庄港、社渎港、官渎港、城东港、大浦港、朱渎港、黄渎港和乌溪港),污染较重的西南 部入湖河流(大汊港、合溪新港、新塘港和杨家浦港),污染较轻的南部河流(长兜港、大钱港、幻楼和太浦河),其中长兜港、 大钱港和幻溇为出入湖河流,太浦河为出湖河流,河口采样位点分布见图1。2014年12月、2015年10月、2016年3和2016 年7月,进行水体营养盐消减原位培养试验。

注: XZ 新庄港, SD 社渎港, GD 官渎港, CD 城东港, DP 大浦港, ZD 朱渎港, HD 黄渎港, WX 乌溪港, DC 大汊港, HX 合溪新港, XT 新塘港, YJ 杨家浦港, CG 长兜港, DQ 大钱港, HL 幻楼, TP 太浦河.

图1 太湖西岸河口试验点分布

Fig. 1 Sampling Sites in Inlet Rivers Around

West Lake Taihu

1.2 原位试验设置与样品采集

自主研发装置(图 2, 专利授权号: ZL201520816420.7)的主体为直径 80cm、高 2.5cm 的圆形钢环,通过 3 根宽 2cm 钢板与中 轴连接,钢环上等距离分布着 12 个直径为 3.5cm 圆环,用以悬挂培养瓶和温度计,培养瓶通过瓶塞上的乳胶管与大气相通。原 位培养试验处理与样品采集均参见文献^[14]。

图 2 实验装置示意 Fig. 2 Diagram of Experimental Device

Fig. 2 Diagram of Experimental Dev

1.3 水环境参数测定方法与消减速率计算

采用多参数水质分析仪(YSI)现场测定温度、pH,采用 RiverSurveyorM9(SonTek, Xylem 子公司)原位测定断面流速、流量、 河宽。采用过硫酸钾氧化法同时测定水体中总氮(TN)和总磷(TP),该方法可将水体中全部氮和全部磷氧化成硝酸盐和磷酸盐^[15], 再以紫外分光光度法测定 TN,以钼锑抗分光光度法测定 TP。

研究把氮磷消减速率分为绝对消减速率和相对消减率,以探讨不同参考标准下的氮磷消减特征。绝对消减速率是单位时间 单位体积内污染物消减量,其结果可以近似表示水体污染物自净能力,计算公式如下:

$$R_{\underline{*}} = (C_1 - C_2) / t^* \ 1000$$

相对消减率指一定时间和体积内消减量占初始含量的比例,其值大小主要取决于绝对消减速率大小与初始浓度,计算公式 如下:

$$R_{\rm fl} = (C_1 - C_2) / (t^* C_1) = R_{\rm fl} / (1000^* C_1)$$

式中:R 绝为绝对消减速率,单位为 mg/(m³•d); R 相为相对消减率,单位为 d⁻¹; C₁, C₂为污染物消减前后浓度单位为 mg/L; t 为培养时间单位为 d。

1.4 数据处理与统计

采用 Excel2016、IBMSPSSStatistics19.0进行数据处理与作图,利用 ArcGIS10.2进行采样点位图绘制。采用 Person 相关性分析和单因素方差分析(SPSS19.0)对数据进行相关性和差异性分析,对 16个采样点春季、夏季、秋季和冬季总氮、总磷绝对消减速率和相对消减率进行聚类分析^[16]。本文采用广泛应用的层次聚类,通过 Ward 法和平方欧式距离法生成树状图,并对分组后的数据进行差异性分析。

2 结果与分析

2.1 水体理化特性

表1列出了太湖西岸河口水体理化性质,春、夏、秋、冬四季总氮浓度平均值分别为4.43、3.66、2.91和3.02mg/L,且春季总氮浓度显著高于夏季高于冬季和秋季(P<0.05)。春、夏、秋、冬四季总磷浓度平均分别为0.31、0.34、0.25和0.20mg/L, 且春季和夏季总磷浓度显著高于秋季和冬季(P<0.05)。春、夏、秋、冬四季悬浮物(SS)浓度平均值分别为45.45、26.70、50.25 和29.19mg/L,且春季和秋季 SS 浓度显著大于夏季和冬季(P<0.05)。春、夏、秋、冬四季水温分别为18.23、32.71、19.56和 10.44℃。

河道名称		ıg/L)			TP(mg/L)				
	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	
新庄港	4.50	4.27	4.17	3.70	0.37	0.43	0.25	0.16	
社渎港	4.49	3.94	3.35	3.52.	0.35	0.42	0.28	0.17	
官渎港	4.55	3.79	3.90	4.03	0.36	0.40	0.24	0.19	
城东港	4.29	4.31	3.79	3.73	0.36	0.39	0.30	0.19	
大浦港	4.10	3.44	3.61	3.68	0.29	0.38	0.30	0.30	
渚渎港	4.21	4.58	2.96	3.74	0.31	0.48	0.25	0.21	
黄渎港	4.88	3.53	3.38	4.10	0.37	0.36	0.29	0.11	
乌溪港	3.91	3.93	3.21	4.57	0.31	0.37	0.30	0.15	
大叉港	5.48	4.14	3.00	2.10	0.21	0.40	0.34	0.06	
合溪新港	4.17	3.76	2.21	2.77	0.29	0.34	0.23	0.10	
新塘港	4.68	3.66	2.77	3.12	0.37	0.33	0.29	0.11	
杨家浦港	4.34	3.52	2.65	2.30	0.31	0.32	0.32	0.14	
长兜港	4.63	2.99	1.99	1.67	0.28	0.20	0.21	0.22	
大钱港	5.10	3.27	1.62	1.87	0.31	0.20	0.14	0.27	
幻涹	4.66	2.96	2.04	2.22	0.28	0.19	0.19	0.34	
太浦河	2.93	2.50	1.96	1.21	0.22	0.16	0.16	0.41	
河送夕秒	SS(mg/L)				T (°C)				
 何 但 石 称	春季	夏季	秋季	冬季	春季	夏季	秋季	冬季	
新庄港	39.71	29.79	36.00	23.50	19.83	33. 72	19.62	10. 45	
社渎港	57.31	27.96	30.00	35.00	19.94	33. 13	19.47	8.72	
官渎港	40.23	39.39	40.00	34.50	19.98	32.38	19.61	10.36	

表1 各河流水体物理化学性质

城东港	32. 55	46.94	55.00	22.50	20.09	30.86	19.54	10.62
大浦港	48.21	32.92	34.00	30.00	19.68	31.82	19.56	10.68
渚渎港	40.00	54.07	32.00	28.50	18.43	31.01	19.54	11.02
黄渎港	27.26	25.44	23.00	47.50	17.99	31.12	19.81	11.19
乌溪港	67.27	28.65	38.00	34.00	17.96	30. 27	19.57	9.03
大叉港	7.05	19.41	63.00	40.00	15.17	33.76	19.11	10.72
合溪新港	55.99	25.80	58.00	18.00	16.77	33.14	19.72	10.61
新塘港	51.47	10.04	72.00	25.00	17.12	32.98	19.64	8.32
杨家浦港	81.38	12.79	121.00	23.50	17.44	33.69	20.02	10.05
长兜港	45.89	20.37	89.00	16.00	18.04	33.44	19.45	11.02
大钱港	48.45	12.51	46.00	20.50	18.53	33.85	19.77	12.17
幻缕	50.88	15.59	39.00	34.50	18.20	33. 58	19.33	11.26
太浦河	33. 49	25.07	28.00	34.00	16.53	34.62	19.16	10.76

2.2 总氮消减速率季节性变化

从图 3 可以看出,各河流水体 TNR [∞]_他存在显著季节差异特征 (P<0.05), XZ、SD 至 CG 共 13 个河流水体夏季或秋季 TNR [∞]_他高于 春季或冬季,春、夏、秋、冬 TNR [∞]_他平均值分别为 489.03±107.94、910.70±157.34、841.31±205.11 和 346.43±145.75mg/(m³ td)。 DQ、HL 和 TP 河流水体秋季或冬季 TNR [∞]_他大于春季或夏季,春、夏、秋、冬平均 TNR [∞]_他分别为 547.98±61.78、592.12±69.94、 993.24±156.34 和 728.46±353.08mg/(m³ td)。

从表 2 可以看出,各河流入湖河口水体 TNR #存在显著季节性差异(P<0.05),春、夏、秋、冬四季 TNR #平均值分别为 0.12 ±0.03、0.23±0.03、0.33±0.13 和 0.15±0.12d-1,夏季和秋季 TNR #显著大于春季和冬季(P<0.05),夏季和秋季、春季和 冬季间无显著性差异(P>0.05)。

台占									
世界-	春季	夏季	秋季	冬季					
XZ	0.13±01c	0.22±01a	$0.22 \pm 02a$	$0.06\pm02c$					
SD	$0.12 \pm 01c$	$0.27 \pm 02a$	$0.17\pm01\mathrm{b}$	$0.12\pm02c$					
GD	$0.10\pm01c$	0.23±04a	0.20 ± 0.03 b	$0.12\pm01c$					
CD	$0.11\pm01\mathrm{c}$	$0.21 \pm 05b$	$0.26 \pm 03a$	$0.11\pm00\mathrm{c}$					
DP	$0.11 \pm 00 \mathrm{b}$	$0.24 \pm 02a$	$0.19\pm05\mathrm{b}$	$0.06\pm02\mathrm{b}$					
ZD	$0.15 \pm 01 \mathrm{b}$	$0.27 \pm 05a$	0.33±06a	$0.06\pm04\mathrm{b}$					
HD	$0.12 \pm 01 \mathrm{b}$	$0.23 \pm 07a$	0.28±03a	$0.05\!\pm\!00\mathrm{c}$					
WX	$0.11 \pm 01 b$	$0.24 \pm 05a$	$0.25 \pm 03a$	$0.06\pm01\mathrm{b}$					
DC	$0.08\pm02\mathrm{c}$	$0.27 \pm 01b$	$0.33 \pm 03a$	$0.07\pm02\mathrm{c}$					
НХ	$0.11 \pm 02c$	$0.18 \pm 01b$	$0.22 \pm 03a$	$0.17\pm00\mathrm{b}$					
XT	$0.16\pm02\mathrm{b}$	0.24±05ab	0.28±0.07a	$0.06\pm0.00\mathrm{c}$					
YЈ	$0.13\pm02c$	$0.22 \pm 00b$	0.44±03a	$0.13\pm02c$					

表 2 总氮相对消减率

$0.04\pm01c$	$0.25 \pm 00b$	0.46+0.06a	0.32±04b
0.10 ± 01 d	0.18±03c	$0.50\pm01a$	$0.35 \pm 02b$
0.11±01c	$0.22 \pm 02c$	$0.54 \pm 04a$	0. 42±14b
$0.17\pm00c$	0.21	$0.58 \pm 00a$	0.27 ± 04 b
$0.12 \pm 03b$	0.23±03a	0.33±13a	0.15±0.12b
	0.04±01c 0.10±01d 0.11±01c 0.17±00c 0.12±03b	$0.04\pm01c$ $0.25\pm00b$ $0.10\pm01d$ $0.18\pm03c$ $0.11\pm01c$ $0.22\pm02c$ $0.17\pm00c$ 0.21 $0.12\pm03b$ $0.23\pm03a$	$0.04\pm01c$ $0.25\pm00b$ $0.46\pm0.06a$ $0.10\pm01d$ $0.18\pm03c$ $0.50\pm01a$ $0.11\pm01c$ $0.22\pm02c$ $0.54\pm04a$ $0.17\pm00c$ 0.21 $0.58\pm00a$ $0.12\pm03b$ $0.23\pm03a$ $0.33\pm13a$

注: 表中数值为 means ± SD.

2.2 总氮消减速率空间变化

基于春、夏、秋、冬四季 TNR 绝聚类分析结果(图 4 左),将 TNR 绝在空间区域上划分为 4 组,组 1 和组 3 分别为西部和西 北部河流,组 2 和组 4 分别为西南部和南部河流。从图 5 可以看出,除春季外,其他 3 个季节水体 TNR 绝呈显著空间差异性(P <0.05)。夏季组 1、组 3 河流水体 TNR 绝大于组 2、组 4 河流,秋季组 3 河流水体 TNR 绝显著小于其他河流(P<0.05),冬季组 2 河流水体 TNR 绝显著高于其他河流(P<0.05)。可见,太湖西岸河流水体 TNR 绝空间差异性受到季节变化制约。

图 4 四季总氮绝对消减速率(左)和相对消减率(右)聚类分析

Fig. 4 Clustering Based on the Total Nitrogen Reduction Rates (left) and Relative Reduction Rates (right)

基于 TNR 相聚类分析结果(图 4 右),将 TNR 相在空间区域上划分为 2 组,组 1 包括太湖西北到西部 12 条河流,组 2 为太湖 南部 4 条河流。研究结果表明(图 5),春季和夏季河流水体 TNR 相空间差异不显著(P>0.05),秋季和冬季存在显著空间差异性(P < 0.05)。

Fig. 5 Average Total Nitrogen Reduction Rates of Groups in Different Seasons

2.3 总磷消减速率季节性变化

从图 6 可以看出, TPR 绝具有显著季节差异性 (P<0.05)。XZ、SD 至 CG 共 13 个河流水体中夏季和秋季 TPR 绝显著大于春季 和冬季 (P<0.05),春、夏、秋、冬四季 TPR ^他平均值分别为(67.54±15.11)、(109.36±25.50)、(114.41±47.12)、(62.62± 28.81) mg/(m³•d); DQ、HL 和 TP 河流水体 TPR ^他冬季显著大于春季、夏季、秋季 (p<0.05),春、夏、秋、冬四季 TPR ^他平均值 为(85.14±8.74)、(50.4±9.86)、(106.54±17.21)、(243.81±100.91) mg/(m³•d)。

Fig. 6 Total Phosphorus Reduction Rates of Sampling Sites in Different Seasons

从表 3 可以看出, TPR _#同样存在显著季节差异性 (P<0.05)。春、夏、秋、冬四季 TPR _#平均值分别为 0.23±0.07、0.29±

0.04、0.46±0.17、0.41±0.14d-1。各河流采样点季节间存在显著差异性(P<0.05)。总体来看,秋季和冬季 TPR _#显著大于 春季和夏季(P<0.05)。

	TP 相对消减率(d ⁻¹)								
位点	春季	夏季	秋季	冬季					
XZ	0.14±07c	0.27 ± 03 ab	0.31±07a	0.34±03a					
SD	$0.23 \pm 07c$	$0.29\pm03\mathrm{bc}$	$0.35 \pm 04 ab$	$0.43 \pm 10a$					
GD	$0.12 \pm 0.05c$	$0.29 \pm 03b$	0.35±06ab	0.38±00a					
CD	$0.20\pm0.01c$	$0.26\pm06c$	0.39±04a	0.36±04a					
DP	$0.22\pm09a$	$0.29\pm06a$	$0.40 \pm 10a$	0.30±0.18a					
ZD	0.18 ± 04 b	0.33±05ab	$0.20 \pm 13b$	$0.51 \pm 16a$					
HD	$0.21\!\pm\!05\mathrm{b}$	0.29±07b	0.70±07a	$0.31 \pm 0.05 \mathrm{b}$					
WX	$0.22 \pm 05a$	$0.26 \pm 05a$	$0.24 \pm 06a$	$0.30 \pm 05a$					
DC	$0.28 \pm 04 \mathrm{b}$	0.40±01a	$0.31 \pm 00b$	0.25 ± 0.03 b					
НХ	0.19 ± 0.03 b	$0.27 \pm 04 \mathrm{b}$	0.46±10a	$0.52 \pm 0.03a$					
XT	$0.17\pm03c$	$0.26 \pm 01 \mathrm{b}$	$0.38 \pm 06a$	$0.36 \pm 05a$					
YЈ	$0.26 \pm 02b$	$0.31 \pm 07 \mathrm{b}$	$0.65 \pm 05a$	$0.31 \pm 04 b$					
CG	$0.37 \pm 04 \text{bc}$	$0.30\pm06\mathrm{c}$	$0.67 \pm 06a$	$0.48 \pm 05b$					
DQ	$0.25 \pm 07c$	$0.27 \pm 04c$	$0.63 \pm 06a$	$0.52 \pm 05b$					
HL	$0.37 \pm 05b$	0.30 ± 04 b	$0.66 \pm 05a$	$0.44 \pm 22b$					
TP	$0.30 \pm 12c$	0.25	0.66 ± 0.86	$0.80 \pm 03a$					
平均值	$0.23 \pm 07 \mathrm{b}$	$0.30 \pm 04 \mathrm{b}$	$0.46 \pm 17a$	$0.41 \pm 14a$					

表3 总磷相对消减率

注:表中数值为means±SD.

2.4 总磷消减速率空间变化

基于四季 TPR ^{*}^{*}聚类分析结果,研究区河流水体 TPR ^{**}按空间区域可以分为 2 组。组1 主要为太湖西部和西北部河流,组 2 主要为太湖南部河流(图 7 左)。从图 8 可以看出,春季和冬季南部河流水体(组 2) TPR ^{**}显著大于其他河流(组 1) (P<0.05),分别是组1的1.4和3.7倍;夏季组1河流水体 TPR ^{**}显著大于组2河流(P<0.05),约是组2的2.2倍;秋季组1和组2河流水体 TPR ^{**}无显著性差异(P>0.05)。

Fig. 7 Clustering Based on the Total Phosphorus Reduction Rates (left) and Relative Reduction Rates (right)

图 8 不同分组总磷季节消减速率

基于四季 TPR #聚类分析结果, TPR #按空间区域可分为2组,每组所含河流与 TPR #聚类分析基本一致。结果表明(图8), TPR 相春季和秋季存在显著空间差异性(P<0.05),而夏季和冬季无显著空间差异性(P>0.05)。

3 讨论

3.1 总氮消减速率时空差异性分析

太湖西岸河流水体夏季和秋季 TNR #和 TNR #显著大于春季和冬季 (P<0.05),研究结果表明 TNR #与 PTN (颗粒态总氮)浓度呈

显著正相关关系(R²=0.6170)而与TN浓度无显著相关性。研究区河流PTN浓度为秋季(1.9mg/L)>夏季(1.8mg/L)>春季(1.2mg/L) >冬季(0.6mg/L),这与TNR绝季节变化一致。区域地表水质受到自然过程和人为输入影响^[17],夏季和秋季雨水较多,降雨径 流携带农业面源污染及颗粒物进入河流,悬浮物吸附含氮物到其表面使水体中PTN浓度升高。悬浮物吸附和富集污染物后,沉 降到水体底层,使水体中污染物浓度降低^[18]。此外,夏季和秋季水温明显高于春季和冬季,有研究表明总氮的降解过程与水温 呈正相关性^[19]。悬浮物内部存在能提供反硝化所需的好氧--厌氧微界面环境^[20],使反硝化在富氧水体中也可以发生^[21],先前 研究表明夏季微生物作用下的TN消减速率占总消减速率的12.9%~50.3%^[14],所以温度的季节差异,也是TNR绝季节差异的原 因。所以,TNR绝季节差异性原因主要是PTN浓度和温度的季节性差异。

TNR 绝的空间差异性同样与颗粒态总氮浓度相关。研究区春季雨水较少各河流扰动较弱,而农业面源氮污染物多为无机氮^[22], 从而导致河流中 PTN 比例较少(占 TN 含量的 26.2%)且无显著空间差异(表 4)。夏季组 1TNR [&]高于其他组,研究中 TNR [&]与 TN 浓 度(R²=0.6985, P<0.05, n=16)和 PTN 浓度(R²=0.7729, P<0.05, n=16)均存在线性正相关关系。组 1 河流中城东港为主要航运 河流水体扰动剧烈,其他河流周围均为农田且无防护堤,降雨径流携带大量农田面源污染物进入河流^[23],而其他河流多为城镇 且有防护提,外源农田面源污染较弱,导致 TN 浓度和 PTN 浓度存在空间差异。秋季组 2 和组 4 河流 TNR 绝显著高于其他河流。 秋季组 1 和组 3 中的河流位于太湖西部和西北部为蓝藻爆区^[24],而组 2 和组 4 河流位于太湖南部湖州和苏州境内无明显蓝藻爆 发,蓝藻主要漂浮或悬浮在水体中不易沉降,所以组 1 和组 3 虽然有高的颗粒态总氮但沉降较少。冬季组 4 河流中颗粒态总氮 浓度显著高于其他组,并且冬季 TNR [&]与 PTN 浓度(R2=0.6890, P<0.05, n=16)呈线性相关关系。冬季组 4 河流为太湖主要出湖 河流,水体扰动较其他河流大,可能导致颗粒态总氮浓度高于北部和西北部河流。所以 TNR 绝空间差异性的原因是 PTN 浓度空 间差异性。

		春季			夏季			秋季			冬季	
	TN	PTN	百分比 (%)	TN	PTN	百分比 (%)	TN	PTN	百分比 (%)	TN	PTN	百分比 (%)
组1	4.7±5ab	1.3±6a	28.7	4.2±4a	2.3±2a	54.6	3.5±5a	2.2±3a	64.9	3.5±8a	$0.2\pm1\mathrm{b}$	5.4
组2	$3.6\pm0\mathrm{b}$	1.0±1a	26.9	$3.0\pm7b$	$1.6\pm3b$	54.5	2.3±5ab	$1.7\pm3b$	75.3	$1.8\pm8b$	$0.7\pm3b$	43.1
组3	4.3±3ab	1.1±4a	25.2	$3.8\pm2a$	$1.7\pm2b$	46.4	3.2±3a	1.8±3ab	58.3	3.6±6a	0. 3±4b	8.9
组4	4.8±3a	1.2±1a	24.1	3.1 \pm 2b	1.4±1b	45.5	$1.9\pm2b$	$1.5\pm2b$	79.3	1.9±3b	1.6±3a	84.9
注: 7	5分比为 PT	N 占 TN 译	ī分比: a	,h 表示差	异性(ANOW	'A, P<0	. 05) .					

表 4 不同组四季总氮(TN) 和颗粒态总氮(PTN) 平均浓度(mg /L)

从公式(R_m=R_m/(1000*C1))中可以看出 TNR_m与 TN 浓度呈显著负相关,与 TNR_m呈正相关。研究结果表明, TNR_m与 TN 浓度 呈显著负相关(R²=0.4009, P<0.05, n=64),与 TNR_m呈显著正相关(R²=0.5882, P<0.05, n=64)。所以, TNR_m季节差异性原因 主要是 TNR 绝和 TN 浓度。

3.2 总磷消减速率时空差异性分析

TPR 绝与 TP 浓度存在显著正相关关系 (R²=0.2998, P<0.05, n=64), 冬季大钱港、幻溇和太浦河 TP 平均浓度为 0.34mg/L 高于春季 (0.32mg/L)、夏季 (0.19mg/L)、秋季 (0.16mg/L)。大钱港、幻溇和太浦河试验点所处地多为城镇和渔船,含有大量磷

的生活污水直接排入河流导致了较高的 TP 浓度^[25]。而其他 13 条河流 TPR 绝为夏、秋季高于春、冬季,这与结果中 TP 浓度夏 (0.37mg/L)、秋 (0.34mg/L)季高于春 (0.32mg/L)、冬 (0.16mg/L)季具有一致性。这 13 条河流位于太湖西部和西北部,夏、秋季 太湖蓝藻爆发,死亡蓝藻残体使水体中总磷浓度较高^[26]。

春季 TPR 绝与 TP 浓度无显著相关性,而且春季 TP 浓度的变异系数(15.8%)小于夏(28.5%)、秋(22.5%)和冬(48.3%)季,TP 浓度无空间差异性。春季 TPR 绝与水体 pH 呈线性相关关系(Pearson=0.5130, P=0.034, n=16),刘海燕等^[27]研究发现随着 pH 值的升高,黄河沉积物对磷的吸附量增加。所以春季 TP 浓度对 TPR 绝没有显著影响,pH 值等其他因子导致了春季 TPR [®]空间差 异性。夏季 TPR [®]与 TP 浓度(R²=0.9289, P<0.01, n=16)和悬浮物含量(R2=0.3230, P=0.02, n=16)均呈线性相关关系。夏季组 1TP 浓度(0.37 mg/L)显著大于组 2(0.19 mg/L),悬浮物浓度组 1(28.7 mg/L)大于组 2(17.7 mg/L)。陈明洪^[28]等研究表明,悬浮颗 粒物表面鞍部、凹地和凸起的地方存在较多活性吸附位,吸附磷的可能性较大。悬浮物对水体中磷具有吸附效果,并且悬浮物 含量越高、TP 浓度越大吸附效果越好^[29-31]。夏季组 1 河流所处环境多为农田,雨水冲刷带来农田污染和大量悬浮物加之蓝藻爆 发,导致组 1 较组 2 河流有较高的 TP 浓度和悬浮物浓度,可见夏季 TPR 绝空间差异性原因主要是 TP 浓度和悬浮物浓度的差异 性。秋季组 1 和组 2TPR 绝虽然无显著差异,但从图 6 中可看出仍有一定空间差异性原因主要是 TP 浓度和悬浮物浓度的差异 性。秋季组 1 和组 2TPR 绝虽然无显著差异,但从图 6 中可看出仍有一定空间差异性(TPR [®]变异系数为 39.3%)。秋季 TPR [®]与 TP 浓度(变异系数为 22.5%)无相关性,而与悬浮物浓度呈显著线性相关(R²=0.6695, P<0.01, n=16)。郭长城等^[29]研究表明,泥 沙含量对水体中磷具有吸附效果,所以秋季 TPR 绝空间差异性原因主要是悬浮物影响。冬季,组 2TPR [®]显著大于组 1,空间差异显著。冬季 TPR [®]与 TP 浓度呈极显著线性相关(R²=0.9188,P<0.01,n=15),冬季组 2 河流 TP 平均浓度为0.34 mg/L,组 1为0.15 mg/L, 而与悬浮物浓度(变异系数 29.2%)无显著相关性,所以冬季 TPR [®]空间差异性原因主要是 TP 浓度。

从公式(R_#=R_#/(1000*C1))中可以理论上 TPR_#应与 TP 浓度呈显著负相关,与 TPR_#呈正相关。研究结果表明, TPR_#与 TP 浓度在春季(R2=0.4126, P<0.05, n=16)和冬季(R²=0.4503, P<0.05, n=16)呈显著相关性,与 TPR_#呈显著正相关(R2=0.4172, P<0.05, n=64)。所以, TPR_#时空差异性原因是 TPR 绝和 TP 浓度的差异性。

4 结论

(1) TNR ^{*}^{*}和 TPR ^{*}^{*}存在显著时空差异特征,西北部和西部河流水体 TNR ^{*}^{*}和 TPR ^{*}^{*}夏季或秋季消减速率高于春季或冬季,南部 河流则秋季或冬季高于春季或夏季。整体上夏季 TNR 绝和 TPR 绝西部和西北部河流水体高于南部,冬季则相反,春秋两季虽有 差异但其数值差异不大。

(2) TNR ^{*}^{*}^{*}时空差异性的主要原因是 PTN 浓度和温度的时空异质性, TPR ^{*}^{*}^{*}的季节差异性主要是 TP 浓度的季节差异性导致。TPR ^{*}^{*}^{*}^{*}的空间差异性影响因素有所不同,春季主要是 pH 等物理指标影响,夏季主要是 TP 浓度和悬浮物浓度影响,秋季主要是悬浮物浓度影响,冬季主要是 TP 浓度影响。

(3) TNR 相和 TPR _#分别受 TNR _能和 TPR _能及其初始浓度影响,这与从公式 (R _#=R _能/(1000*C1))所表达的含义具有一致性,所以 R _#时空差异性主要影响因素是 R _#和初始浓度。

参考文献:

[1] XU H, YANG L Z, ZHAO G M, et al. Anthropogenic impact on surface water quality in Taihu Lake region,China. [J]. Pedosphere, 2009, 19(6) : 765-778.

[2] QIN B, ZHU G, GAO G, et al. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management [J]. Environmental Management, 2010, 45 (1) : 105 - 12.

[3] CAI Q, GAO X, CHEN Y, et al. Dynamic variations of water quality in Taihu lake and multivariate analysis of its influential factors [J]. Chinese Geographical Science, 1996, 6 (4) :364-374.

[4] 卢少勇,焦伟,王强,等. 环太湖河流水质时空分布特征 [J]. 环境科学研究,2011,24(11):1220-1225.

[LU S Y, JIAO W, WANG Q, et al. Spatial-temporal distribution characteristics of water quality of rivers around Taihu lake [J]. Research of Environmental Sciences, 2011, 24 (11) :1220-1225.

[5] 高永霞, 宋玉芝, 于江华, 等. 环太湖不同性质河流水体磷的时空分布特征 [J]. 环境科学, 2016, 37(4):1404-1412.

[GAO Y X, SONG Y Z, YU J H, et al. Spatial and temporal distribution characteristics of different forms of phosphorus in three sorts of rivers around lake Taihu [J]. Environmental Science, 2016, 37(4) : 1404-1412.

[6] 刘德鸿, 余居华, 钟继承, 等. 太湖流域典型河网水体氮磷负荷及迁移特征 [J]. 中国环境科学, 2016, 36(1):125--132.

[LIU D H, YU J H, ZHONG J C, et al. Characteristics of nitrogen and phosphorus loading and migration in typical river networks in Taihu lake basin [J]. China Environmental Science, 2016, 36(1) : 125-132.

[7] 韩梅,周小平,程媛华,等. 环太湖主要河流氮素组成特征及来源 [J]. 环境科学研究,2014,27 (12):1450-1457.

【HAN M, ZHOU X P, CHENG Y H, et al. Study on the sources and characteristics of nitrogen in the major rivers of Taihu lake [J]. Research of Environmental Sciences, 2014, 27(12) : 1450-1457.

[8] WANG X L, LU Y L, HAN J Y, et al. Identification of anthropogenic influences on water quality of rivers in Taihu watershed [J]. Journal of Environment Sciences, 2007, 19 (4) : 475 - 81.

[9] 朱广伟. 太湖水质的时空分异特征及其与水华的关系 [J]. 长江流域资源与环境, 2009, 18(5): 439-445.

【ZHU G W. Spatio-temporal distribution pattern of water quality in lake Taihu and its relation with cyanobacterial blooms [J]. Resources and Environment in the Yangtze Basin, 2009, 18(5) : 439-445.】

[10] 邓建才,陈桥,翟水晶,等. 太湖水体中氮、磷空间分布特征及环境效应 [J]. 环境科学,2008,29(12):3382-3386.

【DENG J C, CHEN Q, QU S J, et al. Spatial distribution characteristics and environmental effect of N and P in waterbody of Taihu lake [J]. Environmental Science, 2008, 29(12) : 3382-3386.

[11] TOWNSEND-SMALL A, MCCARTHY M J, BRANDES J A, et al. Stable isotopic composition of nitrate in Lake Taihu, China, and major inflow rivers [J]. Hydrobiologia, 2007, 581 (1) :135-140.

[12] 朱梦圆,朱广伟,王永平. 太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J]. 环境科学,2011,32(2):409-415.

【ZHU M Y, ZHU G W, WANG Y P. Influence of scum of algal bloom on the release of N and P from sediments of lake Taihu [J]. Environmental Science, 2011, 32(2) : 409-415.

[13] 张路,范成新,池俏俏,等. 太湖及其主要入湖河流沉积磷形态分布研究 [J]. 地球化学,2004,33(4):423-432.

【ZHANG L, FAN C X, CHI Q Q, et al. Phosphorus species distribution of sediment in Lake Taihu and its main inflow rivers [J]. Geochimica, 2004, 33(4) : 423-432.

[14] 郭加汛, 彭俊翔, 张海涛, 等. 太湖流域典型河流含氮物消减速率研究 [J]. 中国环境科学, 2016, 36(10): 3026-3032.

【GUO J X, PENG J X, ZHANG H T, et al. Study on reduction rates of nitrogen pollution in typical rivers of Taihu Basin [J]. China Environmental Science, 2016, 36(10) : 3026−3032. 】

[15] 金相灿,屠清瑛. 湖泊富营养化调查规范 [M]. 第2版. 北京:中国环境科学出版社,1990.

[JINXC, TUQY. Lake eutrophication investigation specification [M]. Version 2. Beijing: China environmental science press, 1990.]

[16] 张旋,王启山,于淼,等. 基于聚类分析和水质标识指数的水质评价方法 [J]. 环境工程学报,2010,4(2): 476-480.

[ZHANG X, WANG QS, YU M, et al. An approach for water quality assessment based on hierarchical cluster analysis and comprehensive water quality identification index [J]. Chinese Journal of Environmental Engineering, 2010, 4 (2) : 476 - 480.

[17] KAZITG, ARAINMB, JAMALIMK, et al. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study [J]. Ecotoxicology and Environmental Safety, 2009, 72(2) : 301-309.

[18] 李一平, 逄勇, 李勇. 水动力作用下太湖底泥的再悬浮通量 [J]. 水利学报, 2007, 38(5): 558-564.

[LI Y P, PANG Y, LI Y. Resuspended flux of sediment in Taihu Lake under hydrodynamic action [J]. Journal of Hydraulic Engineering, 2007, 38(5) : 558-564.]

[19] ZHAO Y, XIA Y, TI C, et al. Nitrogen removal capacity of th river network in a high nitrogen loading region [J]. Environmental Science & Technology, 2015, 49(3) : 1427-35.

[20] LIU T, XIA X H, LIU S, et al. Acceleration of denitrification in turbid rivers due to denitrification occurring on suspended sediment in oxic waters [J]. Environmental Science & Technology, 2013, 47(9): 4053

-4061.

[21] YAO X, ZHANG L, ZHANG Y, et al. Denitrification occurring on suspended sediment in a large, shallow, subtropical lake(Poyang Lake, China) [J]. Environmental Pollution (2016),

http://dx. doi. org/10. 1016/j. envpol. 2016. 05. 073.

[22] 马立珊. 苏南太湖水系农业非点源氮污染及其控制对策研究 [J]. 应用生态学报, 1992, 3(4): 346-354.

[MA L S. Nitrogen pollution from agricultural non-point sources and its control in water system of Taihu Lake
[J]. Chinese Journal of Applied Ecology, 1992, 3(4) : 346-354.]

[23] ABSALON D, MATYSIK M. Changes in water quality and runoff in the Upper Oder River Basin [J]. Geomorphology, 2007, 92(3/4) : 106-118.

[24] 赵家虎,高俊峰,刘聚涛,等. 应用 MODIS 监测太湖蓝藻水华时空分布特征 [J]. 长江流域资源与环境,2011, 20(12):1475-1480.

【ZHANG J H, GAO J F, LIU J T. Determination of spatial and temporal distribution of cyanobacterial water bloom in Taihu Lake using MODIS image data [J]. Resources and Environment in the Yangtze Basin, 2011, 20(12): 1475-1480.

[25] 林海芳. 城镇生活污水排放对钱塘江流域水质的胁迫及治理对策研究 [D]. 浙江大学, 2001.

[LIN M F. Adverse stress of urban domestic wastewater discharge on water quality of Qiantangjiang River and relevant regulating countermeasures [D]. Zhangjiang University, 2001.]

[26] 吴馨婷,祁闯,许晓光,等. 太湖蓝藻衰亡过程中水体营养盐的响应 [J]. 环境科学学学报, 2016.

【WU X T, QI C, XU X G, et al. The response of dissolved nutrients during the decay of cyanobacteria in Lake Taihu [J]. Acta Scientiae Circumstantiae, 2016.】

[27] 刘海燕,周新革,马晓宇,等. pH 值对黄河沉积物磷吸附的影响 [J]. 内蒙古环境科学,2007,19(4):72-74.

【LIU H Y, ZHOU G X, MAO X Y, et al. Impact of pH value on phosphorus adsorption of sediment in Huang river [J]. Inner Mongolian Environmental Sciences, 2007, 19(4) : 72−74. 】

[28] 陈明洪,方红卫,陈志和,等. 泥沙颗粒表面磷吸附分布的实验研究 [J]. 泥沙研究,2009(4):51-57.

[CHEN H M, FANG H W, CHEN Z H, et al. Experiment of phosphorus distribution on sediment surface [J]. Journal of Sediment Research, 2009(4): 51-57.]

[29] 郭长城,喻国华,王国祥. 河流泥沙对污染河水中污染物的吸附特性研究 [J]. 生态环境学报,2006,15(6): 1151-1155.

[GUOCC, YUGH, WANGGX. Adsorption properties of sediment to pollutants of contaminated river water[J]. Ecology and Environment, 2006, 15(6) : 1151-1155.

[30] XIA B, ZHANG Q H, YANG J S, et al. Experimental Investigation of the Effect of Flow Turbulence on the Adsorption of Phosphorus onto Sediment Particles [J]. Applied Mechanics & Materials, 2012, 212-213: 299-306.

[31] 吕平毓,黄文典,李嘉. 河流悬移质对含磷污染物吸附试验研究 [J]. 水利水电技术, 2005, 36(10):93-96.

【LV P Y, HUANG W D, LI J. Study on adsorption experiment for phosphorous pollutant with suspended sediment [J]. Water Resources and Hydropower Engineering, 2005, 36(10) : 93−96. 】