基于 PSR 模型的我国社会重大 风险评估体系研究

刘革 邓庆彪 蔡耀星1

(湖南大学 金融与统计学院,湖南 长沙 410079)

【摘 要】:基于 PSR 模型构建我国社会重大风险评估指标体系,根据聚类分析筛选有效指标,用冗余度和变异系数法对筛选后的指标体系进行有效性检验。采用标准离差法、CRITIC 法和熵值法分别计算压力、状态和响应维度指标权重,计算不同地区在不同时期的压力指数、状态指数、响应指数和反映我国社会重大风险总体状况的总指数。从时间趋势和空间差异上分析了不同地区的各个指数变动情况。研究表明:一个国家或地区的社会重大风险状况取决于社会系统主体对社会重大风险源和形成的社会重大风险的处理。

【关键词】: PSR 模型 社会重大风险 评估体系 指数

【中图分类号】:F832.332【文献标识码】:A【文章编号】:1003-7217(2021)05-0034-08

一、引言

目前,我国处于重要战略发展机遇期,前景十分光明,但挑战也十分严峻。面对世界经济复苏乏力、局部冲突频发、全球性问题加剧的外部形势,中美贸易磨擦、新冠肺炎疫情、重庆公交车坠江等重大风险不断凸显,引起了我国政府和社会各界的高度关注。党的十八大作出了"准备进行具有许多新的历史特点的伟大斗争"的重大判断^[1],党的十九大把防范化解重大风险放在打赢三大攻坚战之首^[2]。"防范化解重大风险是各级党委、政府和领导干部的政治职责"^[3]。如何防范重大风险,不仅是一个政策问题,也是一个技术性问题,需要对重大风险有更深入的认识,以及更有效的重大风险分析、预测和防范的方法和技术手段。

国外早期的研究主要在经济领域建立社会风险评估指标体系,其中有代表性的有美国的"哈佛景气动向指数""富兰德指数""先行指数"等。随着社会发展的进步,具有综合性的风险评估指标体系应运而生,主要涉及社会、政治以及生态系统。艾斯特斯和莫根提出一个国家的社会不稳定性程度的评价指标体系^[4]。艾斯特斯确定了测量社会不稳定性程度的六项指标^[5],罗伯特达尔提出了度量社会稳定状况的四大指标^[6]。跨入新世纪,世界银行将环境、政治、社会、经济、健康和自然六大风险视为一个全球风险警报体系^[7],美国纽约国际报告集团建立了"国际国家风险指南"(ICRG)的预警指标体系,《欧洲货币》的国家风险指数(Euromeoney's Country RiskIndex)。20 世纪末组建的国际透明组织(TI)推出了深受商界和媒体欢迎的腐败风险指数(CIP, Corruption Perception Index)^[8];肯普将社会风险与采矿业联系起来,诠释了社会风险的"反弹动力"效应^[9];格雷兹和弗兰克剖析了社会风险与商业领域之间的关系,并指出社会风险的识别分析有助于预警和防范商业风险^[10]。国外社会风险指数指标体系研究已经进入成熟期,呈现出多视角展开、多学科关注、多维度推进、多层级比较的特点。

^{&#}x27;作者简介:刘革(1971-),女,湖南涟源人,湖南大学金融与统计学院副教授,硕士生导师,研究方向:风险管理与社会保障。 基金项目:教育部人文社会科学规划一般项目(18YJA840008)

国内近年来的相关研究成果主要集中于以下方面:从宏观研究角度来看,针对工业化加速时期,一方面,加快了资金、人才与技术的积累;另一方面,使社会矛盾、冲突甚至危机因素趋向活跃,宋林飞提出了"社会风险早期预警系统"^[11],在未来社会秩序的不确定性、社会稳定预期、适度社会成本、非均衡社会、早期预警等五种社会风险预警理念的基础上,修改为"中国社会风险预警系统"^[12]。社会转型期由此引起的社会结构重组必然会引发种种社会问题与社会冲突,邓伟志提出了由经济、社会、政治和价值观念四个领域的指标构成的"社会风险预警指标体系"^[13]。考虑生存保障、社会心理等因素,李殿伟等选取了生存保障、经济支撑、社会分配、社会控制、社会心理和外部环境系统六个子系统构成了社会风险指标体系^[14]。从微观研究角度来看,童星预测了 2006-2010 年江苏省可能的十项重大的社会风险^[15],邓悦评估天津的社会稳定风险^[16],童余美从自然灾害、政治、经济、社会、人口、公共卫生与生态环境七大方面设计并选取细分评价指标,计算了 2015-2017 年 15 个新一线城市社会稳定风险指数^[17]。

总体而言,基于社会指标的社会风险评估已经陷入停滞,新时期的社会风险评估需要厘清社会风险的生成和演化机理^[18]。现有研究中主要存在以下不容忽视的问题:(1)现有指标体系大多缺乏可靠的理论基础。研究者大多将重点放在指标体系的设计层面,而缺少理论的厚度与现实层面的宏观思考。但国际经验告诉我们,只有拥有理论基础才能建立出如恩格尔系数等富有生命力的指标。(2)在构建指标体系时频繁使用定性法而忽略定量法。虽然定性方法具有直观简易、便于操作的优点,但专家群体可能选择指标差异极大,直接导致指标体系建构的不可比性、主观随意性和不一致性。(3)不完善的统计制度很大程度上限制了社会风险指标指数系统的实际运用,同时,我国缺乏对于社会风险指标指数系统的长时间跟踪研究。与国际体系相比,后者会定期发布评价数据、讨论发展方向及定期公布报告。因此,衡量某个社会风险指标系统是否成熟的重要标志是在时间上进行纵向的研究比较。

二、社会重大风险指标体系构建

(一)研究方法

当前进行风险评价的方法有模糊层次分析法 (AHP) [19]、社会网络分析法 (SNA) [20]、熵权可拓物元模型 [21]、支持向量机 (SVM) [22]、因子分析法 [23] 等等。PSR 模型最初是为了评估世界环境状况而建立的,近年来被广泛应用于构建研究对象与政府、社会成员密切相关的指标体系。如赵军等基于 PSR 框架构建了连云港市土地生态安全评价体系 [24];江燕娟等基于 PSR 模型构建老年人长期照护服务供给评价指标体系 [25];曹竞文等以扶余市为例,基于 PSR 模型建立土地集约利用评价体系 [26];李宏勋等基于 PSR 模型对我国天然气进口安全进行评价 [27];戚湧等基于 PSR 模型对区域高技术产业创新要素供给进行评价 [28]。

PSR 模型能够综合考虑社会、经济、资源与环境等因素对社会重大风险形成的影响,将 PSR 模型运用在建立社会重大风险评估指标体系上,使得指标体系内的指标逻辑关联更加紧密,并使得经过筛选后的指标体系能动态地评估现阶段社会重大风险状况。PSR 模型包含了"压力""状态"及"响应"三个维度。"压力"指一个国家或地区在一定时间内社会系统存在的社会重大风险源给社会秩序带来的压力,回答了"为什么会出现社会重大风险"的问题,它可以反映"状态"发生的原因,同时也是"响应"的结果;"状态"指在一定时间内一个国家或地区的社会秩序在各个社会重大风险源形成社会重大风险时的现状,回答了"发生了什么"的问题,它是在各种"压力"下社会秩序变化的结果,也是政策"响应"的最终目的;"响应"是指在一定时间内一个国家或地区的社会系统主体采取的各项措施,这些措施是为了解决各个社会重大风险源或改善各个社会重大风险源变成社会重大风险时社会秩序的现状,回答了"社会系统主体怎么处理"这些问题,这里的社会系统主体主要指中央或地方政府,"响应"是特定时间内中央或地方政府应对特定"压力"和当前"状态"采取的政策措施或采取政策措施后所带来的结果。

本文构建的社会重大风险指标体系分为维度层、系统层和指标层,对应了"压力-状态-响应"三个维度, "宏观经济-人民生活-生态环境-社会治理"四个子系统,采取基于变量的系统聚类分析筛选方式,把相关性大的指标归为一类,构建出一个能够反映社会重大风险状况的最小完备有效指标集合,用冗余度检验和变异系数检验确保社会重大风险指标体系的有效性。

(二)指标体系的框架结构及数据来源

基于对社会重大风险的形成和传导逻辑分析,结合指标体系构建的基本原则,同时参考相关研究^[11-15,18],根据 PSR 模型的思路,初步建立一个含有压力、状态、响应三个维度,宏观经济、人民生活、生态环境、社会治理四个子系统,总共 69 个指标的社会重大风险指标体系如表 1 所示。其中,实证分析的数据来源于中国统计局的国家数据、各省市自治区统计年鉴、中国法律年鉴及各级地方政府工作报告。

表 1 初选的社会重大风险指标体系

维度层	系统层	指标层							
	宏观 经济	通货膨胀率、投资率、城乡居民人均可支配收入比、农村恩格尔系数、GDP 能耗、消费率、进出口总额变动率							
厂 4	人民 生活	农村贫困发生率、人口老龄化程度、城镇登记失业率、文盲率、交通事故灾难数、每万人卫生机构床位数、城 镇居民收入房价比							
压力	生态环境	能源消耗总量、人均用水量、生活垃圾清运量、工业废水排放量、二氧化硫排放量、成灾面积、人均公园绿地 面积							
	社会治理	立案侦查职务犯罪案件人数、刑事案件立案数							
	宏观 经济	城乡居民人均消费支出比、GDP增速、在岗职工平均工资变动率、第三产业比重、国内专利申请授权数、外资企业总额、农村居民人均纯收入							
状态	人民 生活	城镇单位就业人员变动率、城镇人均住房面积、执业医生数、城镇单位就业人员、十万人口高等学校平均在标 生数、医疗卫生机构数、交通事故直接财产损失总计、老年人抚养比							
	生态环境	人均水资源量、生活垃圾无害化处理能力、森林覆盖率、电力消费量、自然灾害受灾人口、自然灾害直接经济 损失							
	社会治理	每万人民事案件立案数、行政案件收案数							
	宏观 经济	居民消费水平、城镇化率、规模以上工业企业 R&D 经费、人均 GDP、财政预算支出、全社会固定资产投资总额、外商投资企业数、外商投资企业数变动率							
哈克	人民 生活	财政医疗卫生支出占比、财政公共安全支出占比、财政教育支出、城镇职工基本养老保险累计结余、城镇职工 参加养老保险人数、教育经费、财政社会保障和就业支出							
响应	生态环境	造林总面积、市容环卫专用车辆设备、工业污染治理完成投资、国家财政环境保护支出、无害化处理厂数量、 水土流失治理面积							
	社会 治理	财政一般公共服务支出占比、调解民间纠纷数							

(三)指标数据预处理与指标筛选

1. 指标数据预处理。

用极差法对所有的指标进行统一单位处理,处理后所有的数据都转变为相对数,且范围都在 $0\sim1$ 之间,便于之后计算每个维度的分指数和总指数,其中正指标的计算公式见式(1), 逆指标的计算公式见式(2)。

$$x_{\bar{y}}' = \frac{x_{\bar{y}} - \min x_j}{\max x_j - \min x_j} \tag{1}$$

$$x'_{ij} = \frac{x_{ij} - \max x_j}{\min x_j - \max x_j}$$
 (2)

2. 指标筛选。

通过 SPSS 进行对变量的 R 型聚类分析,其中聚类方法采用的是 Ward 方法,样本间的距离采用的是 Euclidean 距离。得到筛选后的社会重大风险指标体系如表 2 所示,压力-状态-响应这三个指标体系各有 15 个指标,将指标依次命名为 X_1, X_2, \cdots, X_{45} 。

表 2 筛选后的社会重大风险指标体系

维度层	系统层	指标层							
	宏观经济	通货膨胀率 (X_1) 、城乡居民人均可支配收入比 (X_2) 、 GDP 能耗 (X_3) 、消费率 (X_4)							
压力	人民生活	人口老龄化程度 (X_5) 、城镇登记失业率 (X_6) 、文盲率 (X_7) 、交通事故灾难数 (X_8) 、每万人卫生机构床位数 (X_8)							
)E/J	生态环境	生活垃圾清运量(X_{10})、二氧化硫排放量(X_{11})、成灾面积(X_{12})、人均公园绿地面积(X_{13})							
	社会治理	立案侦查职务犯罪案件人数(X ₁₄)、刑事案件立案数(X ₁₅)							
	宏观经济	在岗职工平均工资变动率(X ₁₆)、城乡居民人均消费支出比(X ₁₇)、GDP 增速(X ₁₈)、第三产业比重(X ₁₉)							
状态	人民生活	老年人抚养比 (X_{20}) 、城镇单位就业人员 (X_{21}) 、十万人口高等学校平均在校生数 (X_{22}) 、交通事故直接财产损失总计 (X_{23}) 、医疗卫生机构数 (X_{24})							
	生态环境	生活垃圾无害化处理能力(X ₂₈)、电力消费量(X ₂₆)、自然灾害直接经济损失(X ₂₇)、森林覆盖率(X ₂₈)							
	社会治	行政案件收案数(X29)、每万人民事案件立案数(X30)							

	理	
	宏观经济	居民消费水平(X ₃₁)、城镇化率(X ₃₂)、规模以上工业企业 R&D 经费(X ₃₃)、全社会固定资产投资总额(X ₃₄)
响应	人民生活	城镇职工参加养老保险人数(X ₃₅)、财政社会保障和就业支出(X ₃₆)、教育经费(X ₃₇)、财政公共安全支出占比(X ₃₈)、 财政医疗卫生支出占比(X ₃₉)
HH) <u>M</u>	生态环境	无害化处理厂数量(X40)、工业污染治理完成投资(X41)、财政环境保护支出(X42)、造林总面积(X43)
	社会治理	财政一般公共服务支出占比(X44)、调解民间纠纷数(X45)

3. 冗余度检验。

冗余度检验可以检测指标体系中是否有多余的指标。设 R 为指标体系 Z 的相关系数矩阵, r_{ij} 表示每一年里第 i 个指标和第 j 个指标的相关系数,用 RD 来衡量指标体系的冗余度。

$$RD = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |r_{ij}| - n}{n^{2} - n}$$
 (3)

其中,

$$r_{ij} = \frac{\sum_{k=1}^{m} (y_{ki} - \bar{y}_i)(y_{kj} - \bar{y}_j)}{\sqrt{\sum_{k=1}^{m} (y_{ki} - \bar{y}_i)^2 \sum_{k=1}^{m} (y_{kj} - \bar{y}_j)^2}}$$

$$R = \begin{bmatrix} 1 & r_{12} & \cdots & r_{1n} \\ r_{21} & 1 & \cdots & r_{2n} \\ \vdots & \vdots & & \vdots \\ r_{n1} & r_{n2} & \cdots & 1 \end{bmatrix}$$

考虑到社会重大风险的共生性和复杂性,社会重大风险指标体系中的指标不可能完全相互独立,指标体系的 RD 小于 0.5 时,可以认为指标体系中没有多余的指标。将筛选后的压力-状态-响应三个指标体系的指标数据按式(3)计算,结果如表 3 所示。三个维度对应的指标体系在每年的冗余度都符合要求,故筛选后的社会重大风险指标体系通过了冗余度检验。

(四)变异系数法检验

变异系数(CV)即一个指标变量的标准差除以平均值,计算公式见式(4),这里的m为279。

$$CV_{j} = \frac{\sqrt{\sum_{i=1}^{m} (x_{ij} - \bar{x}_{j})^{2}}}{m \over \bar{x}_{j}}$$
(4)

将筛选后的压力-状态-响应三个指标体系的指标数据按式(4)计算,结果如表 4 所示。三个指标体系所含有的指标的变异系数最低的是 X_{ss} =0.155,最大的是 X_{r} =1.227。根据所有指标的变异系数情况综合判定,可以认为筛选后的压力-状态-响应三个指标体系中的每个指标具有稳定性,且具有较强的鉴别能力,可以有效地动态反映社会重大风险的状况。

表 3 冗余度计算结果

维度	2010	2011	2012	2013	2014	2015	2016	2017	2018
压力	0. 255	0. 243	0. 258	0. 253	0. 263	0. 279	0. 245	0. 254	0. 247
状态	0. 277	0. 294	0. 275	0. 281	0. 272	0.308	0. 269	0. 252	0. 264
响应	0.362	0.370	0. 369	0.358	0. 371	0.361	0.370	0.350	0.363

表 4 各指标变异系数汇总

压力	X_1	X_2	X_3	X_4	X_5	X ₆	X ₇	X_8	X_9	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	X ₁₅
CV	0.641	0. 338	0. 781	0. 276	0.460	0.305	1. 227	0.890	0.350	0. 786	0. 699	1. 017	0. 375	0.822	0. 464
状态	X ₁₆	X ₁₇	X ₁₈	X ₁₉	X ₂₀	X_{21}	X_{22}	X_{23}	X ₂₄	X_{25}	X_{26}	X_{27}	X ₂₈	X_{29}	X ₃₀
CV	0. 193	0. 471	0. 444	0. 260	0. 449	0. 267	0. 227	0. 722	0. 434	0. 228	0. 751	1. 157	0. 531	0.814	0. 455
响应	X_{31}	X_{32}	X_{33}	X_{34}	X_{35}	X ₃₆	X ₃₇	X ₃₈	X_{39}	X_{40}	X_{41}	X_{42}	X_{43}	X_{44}	X_{45}
CV	0. 249	0. 392	0. 230	0. 273	0. 213	0. 283	0. 202	0. 155	0. 444	0. 292	0. 178	0. 212	0. 284	0. 294	0. 381

(四)指标权重的确定

对压力、状态、响应这三个维度的指标采用标准离差法、CRITIC 法和熵值法三种不同的客观赋权方法赋权并分析三个维度的指标权重结果。利用标准离差法计算社会重大风险压力维度各指标和各子系统的权重,结果如表 5 所示。利用 CRITIC 法计算社会重大风险状态维度指标体系各指标和各子系统的权重,结果如表 6 所示。利用熵值法计算社会重大风险响应维度各指标和各个子系统的权重,结果如表 7 所示。

对计算的各维度的各子系统的权重按照压力、状态、响应三个维度进行汇总,其中每个维度按照宏观经济,人民生活,生态环境,社会治理分类,结果如图 1 所示。

从得到的权重结果来看,社会重大风险指标体系权重占比前三的指标分别是财政医疗卫生支出占比、城镇化率和调解民间 纠纷数,都集中在响应维度中,说明对一个国家或地区社会系统的社会重大风险整体状况取决于社会系统主体对社会重大风险 源和形成的社会重大风险的处理。社会系统主体即中央和各级政府,需要积极应对社会重大风险所处的不同时期,把形成社会 失序的可能性降到一个安全范围内。

表 5 社会重大风险压力维度各指标权重

子系统	具体指标	子系统权重	标准离差法权重
	通货膨胀率(CPI)		0.0818
宏观经济	城乡居民人均可支配收入比	0. 2400	0.0617
么 观 红的	GDP 能耗/(万吨标准煤/亿元)	0.2400	0.0607
	消费率/% 人口老龄化程度/% 城镇登记失业率/%		0.0648
	人口老龄化程度/%		0. 0801
	城镇登记失业率/%		0.0696
人民生活	文盲率/%	0. 3547	0. 0564
	交通事故灾难数/件		0. 0655
	每万人卫生机构床位数/张		0. 0695
	生活垃圾清运量/万吨		0.0601
生态环境	二氧化硫排放量/吨	0. 2758	0. 0779
土心小児	成灾面积/千公顷	0.2196	0. 0570
	人均公园绿地面积/平方米		0. 0703
社会治理	立案侦查职务犯罪案件人数/个	0. 1295	0. 0484
江云但垤	刑事案件立案数/件	0.1299	0. 0762

表6社会重大风险状态维度指标权重

子系统	具体指标	子系统权重	CRITIC 法权重
	城乡居民人均消费支出比		0. 0728
宁河(及)文	GDP 增速/%	0 9009	0. 0487
宏观经济	在岗职工平均工资变动率/%	0. 2083	0. 0262
	第三产业比重/%		0.0604

	城镇单位就业人员/万人		0. 0710
	每十万人口高等学校平均在校生数/人		0. 0539
人民生活	医疗卫生机构数/个	0. 3883	0. 1123
	交通事故直接财产损失总计/万元		0.0622
	老年人抚养比/%		0.0766
	生活垃圾无害化处理能力/(吨/日)		0.0638
生态环境	森林覆盖率/%	0. 2872	0. 1011
土心小児	自然灾害直接经济损失/亿元	0. 2012	0. 0426
	电力消费量/亿千瓦小时		0. 0799
九人公理	每万人民事案件立案数	0. 1161	0.0811
社会治理	行政案件收案数	0.1101	0. 0474

表7社会重大风险响应维度指标权重

子系统	具体指标	子系统权重	熵值法权重
	居民消费水平/(元/人)		0.0551
宏观经济	城镇化率/%	0. 3060	0. 1372
么 观 红的	规模以上工业企业 R&D 经费/万元	0. 3000	0.0499
	全社会固定资产投资总额/亿元		0.0638
	财政医疗卫生支出占比/%		0.1508
	财政公共安全支出占比/%		0.0197
人民生活	城镇职工参加养老保险人数/万人	0. 3100	0.0411
	教育经费/万元		0.0341
	财政社会保障和就业支出/亿元		0.0642
	造林总面积/千公顷		0.0689
小大 玩培	工业污染治理完成投资/万元	0. 2060	0.0278
生态环境	无害化处理厂数量/个	0. 2000	0.0713
	国家财政环境保护支出/亿元		0. 0381

社会公理	财政一般公共服务支出占比/%	0. 1780	0.0648
社会治理	调解民间纠纷数/件	0.1700	0. 1132

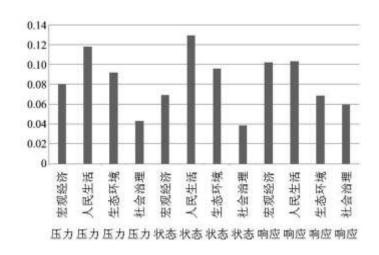


图 1 社会重大风险各维度各子系统权重

三、指数的计算与分析

根据已经确定的权重,按照压力、状态和响应三个维度分别测算 2010-2018 年全国及各省、直辖市、自治区的社会重大风险分指数,并通过对三个维度的分指数求均值得到总指数。

计算社会重大风险压力维度指数和社会重大风险状态维度指数 v 的公式见式(5)。

$$v = \sum_{j=1}^{15} w_j x_{ij}^1 \tag{5}$$

计算社会重大风险响应维度指数 v 公式见式(6)。

$$v = \sum_{j=1}^{15} w_j P_{ij} \tag{6}$$

以全国的社会重大风险状况为评估对象,全国各维度指数及总体指数如图 2 所示。

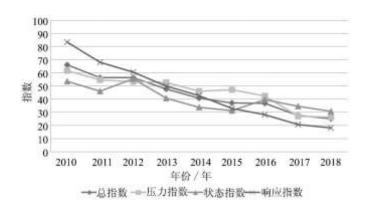


图 2 全国各维度指数及总体指数

分别计算全国和31个省、直辖市、自治区在2010-2018年内的压力指数、状态指数、响应指数和总体指数,如表8所示。

表 8 31 个省份各维度指数及总指数排名

排名	地区	压力指数均 值	变动幅 度	地区	状态指数均 值	变动幅 度	地区	响应指数均值	变动幅 度	地区	总指数均 值	变动幅 度
1	北京	21.03	8. 52	福建	42. 26	1. 28	广东	43. 19	47. 97	北京	39. 42	1. 13
2	海南	30. 39	17. 41	北京	42.86	8. 27	山东	47. 22	49.74	广东	42. 50	7.02
3	天津	34. 75	5. 13	广东	42.90	1.74	江苏	49. 45	43.99	浙江	44. 78	6.09
4	宁夏	34. 84	24. 32	浙江	43.05	2.05	浙江	52. 13	16.30	福建	46. 64	7. 45
5	重庆	35. 61	5. 19	江西	45. 73	2.80	河南	52. 89	36. 26	江苏	47. 93	7. 17
6	青海	35. 87	37. 29	湖南	46.09	3. 16	北京	54. 58	5. 91	山东	47. 94	6.66
7	江西	35. 94	5. 13	陕西	47. 31	0.52	河北	55. 01	22. 21	江西	48. 38	4. 96
8	新疆	36. 30	27.74	广西	47. 31	3.72	四川	56. 39	53. 99	河南	48. 59	12.20
9	上海	37. 18	12. 16	海南	47.69	0.97	湖北	56. 51	25. 68	湖南	48. 97	8.44
10	福建	37. 22	9.02	四川	47.75	5. 76	湖南	57. 39	31.56	河北	49. 13	7. 42
11	黑龙 江	37. 90	5. 15	黑龙 江	47. 94	8.75	福建	60. 37	21. 21	广西	49. 14	13.02
12	吉林	38. 43	2. 28	河北	48.99	5. 59	安徽	61. 41	21. 22	湖北	49. 23	7.06
13	甘肃	38. 43	31. 57	河南	49. 36	1.94	广西	61.41	16. 54	四川	49. 51	16. 75
14	浙江	38. 67	8. 38	湖北	49.67	7. 30	辽宁	61. 53	10.08	海南	49. 55	7. 09
15	西藏	38. 85	6. 53	辽宁	49. 98	4. 17	内蒙 古	61.70	8. 75	重庆	50. 16	3. 84

16	广西	39. 19	33. 15	重庆	50.05	2.32	云南	62. 07	17.88	上海	50. 49	2.74
17	广东	40.99	2. 15	山东	50.63	3. 59	陕西	62. 12	14.46	陕西	50. 76	2.34
18	湖北	41.44	14. 77	上海	51.05	4. 36	上海	63. 40	13. 31	黑龙 江	50.86	1.98
19	辽宁	41.68	6. 81	吉林	51.57	3.38	江西	63. 62	26. 84	辽宁	50. 99	3.50
20	江苏	41.71	4. 43	江苏	51.63	1.12	山西	64. 17	14. 42	天津	51. 70	3. 58
21	山西	41.93	12. 52	山西	51.79	3. 49	重庆	64. 98	25. 96	云南	52. 20	6. 41
22	贵州	42.00	14.72	天津	52.07	0.39	贵州	65. 10	27. 10	山西	52. 50	7.03
23	安徽	42. 15	7. 31	云南	52. 70	2.38	黑龙 江	66. 93	3. 97	吉林	52. 57	1.09
24	云南	42. 44	7. 28	贵州	53. 41	4. 67	天津	67. 70	8. 78	内蒙 古	53. 31	2. 49
25	内蒙 古	42.81	4. 28	内蒙 古	55. 94	2. 58	吉林	67. 91	6. 16	贵州	53. 41	6.88
26	陕西	42. 88	3. 03	宁夏	56. 23	2.20	甘肃	68. 31	12.65	安徽	53. 45	3. 12
27	湖南	43. 27	17.32	甘肃	56.60	1.47	新疆	70. 70	7. 41	甘肃	54. 26	9. 79
28	河北	43. 53	9. 70	西藏	57.02	3.59	海南	71. 28	11.09	新疆	54. 81	6.07
29	河南	43.88	12. 22	安徽	57. 25	4.95	宁夏	75. 16	6. 72	宁夏	55. 20	5. 55
30	四川	44. 19	12. 26	青海	57. 92	3.30	青海	75. 91	17. 92	青海	56. 36	12. 35
31	山东	46. 14	3, 68	新疆	58. 16	2.60	西藏	82. 24	6. 40	西藏	59. 10	3. 17

从时间趋势上分析全国的各个指数变动情况,从时间趋势和空间差异上分析 31 个省份的各个指数变动情况,并通过计算各地区八年内的平均指数和方差来做排名分析和变动幅度分析,主要结论为:

1. 平均压力指数排名情况看,北京在八年内的平均压力指数最低,且远低于第二名海南,而且其整体变动幅度不大,每年都保持全国第一的水准,从时间趋势上看其压力指数是从 2011 年达到顶点后缓慢下降。位于第二的海南则是阶梯式下降,到 2015 年最小,随后的 2017 年和 2018 年有微微的上升。第三名天津变动幅度相对第一名和第二名较小,从时间趋势上看,其压力指数表现出缓慢上升又缓慢下降的趋势。平均压力指数较高的后三名分别为河南、四川、山东,河南平均压力指数高的原因主要在于,其 2010-2014 年这五年的压力指数偏高,通过查看预处理后的数据得知,其前五年在通货膨胀率、城镇登记失业率、每万人卫生机构床位数、人均公园绿地面积和刑事案件立案数这些权重占比较高的指标上取值过高;四川平均压力指数高的原因主要在人口老龄化程度、城镇登记失业率、每万人卫生机构床位数、人均公园绿地面积这些权重占比较高的指标上取值过高;山东平均压力指数高的原因主要在人口老龄化程度、城镇登记失业率、每万人卫生机构床位数和刑事案件立案数这些权重占比较高的指标上取值过高。此外,变动幅度最高的是青海省,从其压力指数的变动来看,除了 2015 年有些许上升之外,其余各年都是在下降;从预处理后的数据上看,其在权重比较大的指标如通货膨胀率、每万人卫生机构床位数上随着年份的推移有着明

显的增长。

- 2. 从平均状态指数排名情况来看,前三名分别是福建、北京和广东,其在八年内的状态指数非常接近,其中北京在 2010-2012 年状态指数是最低的,但从 2013 年后最低的位置被福建和广东交替取代;从三个地区的变动趋势来看,其中福建和广东保持的比较平稳,基本上没什么变化,而北京在 2010 年和 2011 年状态指数较低,而后六年稍微有所上升但表现出稳定的趋势。状态指数比较高的后三名分别是安徽、青海和新疆,安徽省状态指数高的原因在于,其在老年人抚养比、医疗卫生机构数、森林覆盖率、每万人民事案件立案数这些权重较高的指标上取值比较高;青海状态指数高的原因在于,其在城镇单位就业人员、老年人抚养比、医疗卫生机构数、森林覆盖率这些权重较高的指标上取值比较高;新疆状态指数高的原因在于其在城镇单位就业人员、医疗卫生机构数、森林覆盖率、每万人民事案件立案数这些权重较高的指标上取值比较高。此外,状态指数变动幅度相对最大的是黑龙江,其状态指数随着年份的增长先增加后保持平稳,从预处理后的数据上来看,其状态指数前几年增长的原因在于两个权重较高指标老年人抚养比和每万人民事案件立案数上取值过高。
- 3. 从平均响应指数排名情况来看,前三名分别是广东、山东和江苏。通过观察 31 个地区的响应指数的变动幅度,发现各地区在这八年内的变动幅度普遍比较大,且所有地区的响应指数都有着或多或少的减少,说明这八年来各个地区的政府认真处理社会稳定风险源,改善社会稳定风险,且采取的预防措施和控制措施均取得了不错的进展。得分处于后三位的分别是宁夏、青海和西藏,从预处理后的数据上可以看到,这三个地区在城镇化率、财政医疗卫生支出占比、无害化处理厂数这些权重较高的指标上都取值比较高;从趋势上看,这三个地区都在这八年内响应指数上取得一定的进步,但其在八年内响应指数的最小值与其他地区相比仍然有不小的差距。此外,响应指数变动幅度相对最大的是四川省,从其趋势上可看到,在 2010-2013 年这三年比较平稳,但从 2014 年开始逐年快速下降;从预处理后的数据来看,在 2014 年及之后四年在城镇化率、财政医疗卫生支出占比、财政社会保障和就业支出和造林总面积这些权重占比较高的指标上取值越来越好。
- 4. 从总体指数来看,排名前三位的分别是北京、广东和江苏,其中北京在压力指数上排名第一,状态指数上排名第二,响应指数上排名第六,总体指数排第一,其每年的总体指数在 31 个省、直辖市、自治区中都是最好的。后三名分别是安徽、青海和新疆,新疆在压力指数上排名第八,状态指数上排名第 31,响应指数上排名第 27,总体指数排名第 31。此外,总体指数变动幅度最大的地区是四川省,其总体指数除了在 2012 年有所上升之外,在其余各年均是下降趋势。

六、结语

- 1. 本文将 PSR 模型用于建立社会重大风险指标体系,按照压力、状态、响应三个维度对应社会重大风险演变成社会失序前三个不同时期的风险状况,这样确定的评估指标体系有理论支持,能够更加客观反映社会重大风险的动态状况。同时,类比"假设一检验"这一统计过程,指标体系的最终确立从粗筛选到严格检验的过程,提高了社会重大风险指标体系的有效性。
- 2. 在指标的选取上,考虑全面性和可操作性不可兼得的情况下,本文构建的指标体系是在保证可操作性的前提下,尽可能满足指标体系的全面性。
- 3. 在指标体系的维度划分上,因为社会重大风险是动态变化的,其状况与社会成员、政府的行为有很大关系,采用因果关系来划分维度。在指标体系的设计上维度层的划分是基于 PSR 模型,各维度指标具有对应关系,如 X₁量化了通货膨胀率过高给国民收入带来了"压力", X₁₆量化了在这种压力下国民收入增速的"状态", X₃₁量化了政府采取一系列措施来促进消费,从而提高国民收入水平的"响应"。通过指标体系有效性检验后,兼顾静态评估和动态评估,体现指标体系科学性。

由于社会重大风险的复杂性和客观数据的可得性,对于社会重大风险源现状的分析可能存在遗漏的情况。本文只证明了筛选后的社会重大风险指标体系是有效的,在今后条件允许的情况下,要进一步完善指标的初步选取过程。其次,在计算完全国和 31 个省、直辖市、自治区的各维度指数和总指数后,没有做 2018 年之后的指数预测和提出具体的政策建议,这部分内容是

值得继续深入研究下去。

参考文献:

- [1] 胡锦涛. 坚定不移沿着中国特色社会主义道路前进为全面建成小康社会而奋斗[M]. 北京: 人民出版社, 2012.
- [2]习近平. 决胜全面建成小康社会夺取新时代中国特色社会主义伟大胜利——在中国共产党第十九次全国代表大会上的报告[M]. 北京:人民出版社,2017.
- [3] 习近平. 习近平在省部级主要领导干部坚持底线思维着力防范化解重大风险专题研讨班开班式上发表重要讲话 [EB/OL]. (2019-01-21) [2020-09-23]. http://www.gov.cn/xinwen/2019-01/21/content_5359898. htm?tdsourcetag=s_pcqq_ai omsg.
- [4] Estes R J, Morgan J. World social welfare analysis: a theoretical model[J]. International Social Work, 1976, 19(2): 3-15.
 - [5] Estes R J. The social progress of nations [M]. New York, Praeger Publishers, 1984.
 - [6] 罗伯特达尔. 现代政治分析[M]. 上海: 上海译文出版社, 1987:102.
 - [7]世界银行. 2000-2001 年世界发展报告:向贫困宣战[M]. 北京:中国财政经济出版社,2003,136.
- [8] Lambsdorff J G. Corruption and reform of institutional economics: Theory, evidence and policy[M]. Cambridge: Cambridge University Press, 2006.
- [9]Kemp D , Worden S , Owen J R. Differentiated social risk: Rebound dynamics and sustainability performance in mining[J]. Resources Policy, 2016, 50:19-26.
- [10] Geordan G, Daniel M F. Conceptualising social risk and business risk associated with private sector development projects[J]. Journal of Risk Research, 2016, 19(5):581-601.
 - [11]宋林飞. 社会风险指标体系与社会波动机制[J]. 社会学研究, 1995(6):90-95.
 - [12]宋林飞. 中国社会风险预警系统的设计与运行[J]. 东南大学学报: 社会科学版, 1999(1):69-76.
 - [13]邓伟志. 关于社会风险预警机制问题的思考[J]. 社会科学, 2003(7):65-71.
 - [14]李殿伟,赵黎明.社会稳定与风险预警机制研究[J].经济体制改革,2006(2):29-32.
 - [15] 童星. "十一五"期间江苏省重大社会风险预警[J]. 公共管理高层论坛, 2006(1):39-57.
 - [16] 邓悦. 天津市社会稳定风险评估指标体系研究[D]. 天津: 天津理工大学, 2019.

- [17] 童余美. 风险社会下社会稳定指数及其指标体系研究[D]. 杭州: 浙江大学, 2019.
- [18]张海波. 发展完善社会稳定风险评估体系[N]. 中国社会科学报, 2019-07-31(6).
- [19]Zimmer K, Frohling M, Breun P, et al. Assessing social risks of global supply chains: A quantitative analytical approach and its application to supplier selection in the german automotive industry[J]. Journal of Cleaner Production, 2017, 149:96-109.
 - [20] 向鹏成,武雪子. 基于 SNA 的重大工程项目社会稳定风险网络构建[J]. 建筑经济, 2018, 39(6):41-47.
- [21]董治,王欢,董小林,等.基于熵权可拓物元模型的公路项目社会稳定风险评估方法[J].中国公路学报,2018,31(9):191-198.
 - [22]李静,谢珍珍,陈小波.基于 SVM 的海上风电项目运行期风险评价[J].工程管理学报,2013,27(4):51-55.
- [23] Choudhry R M, Iqbal K. Identification of risk management system in construction industry in Pakistan[J]. Journal of Management in Engineering, 2013, 29(1):42-49.
 - [24]赵军, 戚晓明, 汪艳芳. 基于 PSR 模型的土地生态安全评价与预测[J]. 蚌埠学院学报, 2019, 8(5):123-128.
 - [25] 江燕娟,李放. 基于 PSR 模型的老年人长期照护服务供给评价指标体系构建及分析[J]. 广西社会科学,2017(8):49-55.
- [26] 曹竞文,李淑杰,李高行,等.基于 PSR 模型和熵权法的扶余市城市土地集约利用评价[J]. 东北师大学报(自然科学版),2019(1):125-132.
- [27]李宏勋, 聂慧, 吴复旦.基于 PSR 模型的我国天然气进口安全评价[J].中国石油大学学报(社会科学版),2020(10):19-26.
 - [28] 戚湧, 张洪瑜. 基于 PSR 模型的区域高技术产业创新要素供给评价[J]. 科技进步与对策, 2020 (22):55-64.