基于空间效应的科技企业孵化器 运营效率俱乐部收敛研究

刘祯1何慧芳2,3李传举21

- (1. 科学技术部火炬高技术产业开发中心, 北京 100045;
 - 2. 华南理工大学 工商管理学院, 广东 广州 510641:
- 3. 广东科学技术情报研究所创业孵化促进中心, 广东 广州 510033)

【摘 要】: 科技企业孵化器在区域间的互动既有利于孵化器运营效率提升,同时又给各地孵化器运营带来新机 遇和新挑战。在考虑空间效应情形下,科技企业孵化器运营效率是愈发极化还是更加趋同值得探究。构建 Super-SBMDEA 模型,测量中国内地 29 个省份 2016-2019 年国家级科技企业孵化器运营效率,采用探索性空间分析法探究科技企业孵化器运营效率的空间分布收敛情况。结果发现:中国大多数省份科技企业孵化器运营处于有效状态,效率分布呈现"东高西低"特征。中国整体组和 L-L 组运营效率呈收敛趋势,但空间效应不显著;H-H 组和 H-L 组运营效率呈收敛趋势,且空间效应显著;L-H 组收敛趋势不明显。研究结论表明在空间效应情形下,科技企业孵化器运营效率呈现整体收敛和多稳态趋同的特点。

【关键词】: 空间效应 孵化器 运营效率 俱乐部收敛

【中图分类号】:F272.2【文献标识码】:A【文章编号】:1001-7348(2022)19-0020-08

0引言

科技企业孵化器在扶持初创企业和中小企业成长、推动区域经济发展过程中发挥着重要作用。除为中小企业提供人才、资金、场地支持外,科技企业孵化器还能够降低创业者的创业成本与风险。更重要的是,科技企业孵化器在促进科技成果"落地生根"、创造就业岗位、优化产业结构等方面起重要推动作用。作为创新要素与资源汇聚的重要载体,科技企业孵化器在早期发展阶段通过汇集各种孵化资源实现自身快速成长。但随着孵化器及被孵企业资源吸收、转化、利用能力的增强及孵化资源投入的不断增加,一些地区出现了资源闲置、资源利用效率低下甚至难以完全发挥孵化功能的问题。因此,提高科技企业孵化器运营效率,由资源驱动向效率驱动转变是促进科技企业孵化器高质量发展的关键。了解科技孵化器经营现状,测算科技企业孵化器运营

^{&#}x27;作者简介:刘祯(1985-),女,陕西宝鸡人,科学技术部火炬高技术产业开发中心高级工程师,研究方向为创新创业、科技管理政策;何慧芳(1981-),女,广东韶关人,华南理工大学工商管理学院博士研究生,广东科学技术情报研究所创业孵化促进中心研究员,研究方向为创新管理、科技政策;李传举(1994-),男,山东枣庄人,华南理工大学工商管理学院博士研究生,研究方向为创新管理、科技政策。

基金项目: 国家自然科学基金项目(71874057);国家自然科学基金一广东联合基金项目(U1901222)

效率,是助力中国孵化器高质量发展的前提。

有关创新创业活动的地域分布并非随机的,而是呈现出一定的规律性^[1]。例如,中国科技企业孵化器发展演变表现出地理集聚性特征,形成了北京中关村、深圳创业园、武汉东湖高新区、上海张江、广州高新区等具有明显集聚特征的优势孵化集群^[2]。一方面,优势地区孵化器运营效率持续提升;另一方面,中国区域发展不平衡现象日益凸显,区域经济收敛在宏观经济调控中的位置愈发重要。那么,我国科技企业孵化器运营效率如何?不同地区运营效率是否存在差异?效率较高地区是否在保持自身良好发展情况下带动了更多地区快速发展,进而缩小了区域差距?如何促进区域科技企业孵化器效率提升?对上述问题的解答对于推动中国孵化器高质量发展具有重要意义。

1 文献综述

1.1 孵化器运营效率

近年来,国内外学者对孵化器运营效率、空间溢出效应和收敛性进行了诸多研究。孵化器运营效率是指孵化器在运营过程中资源投入与产出的对比关系,即孵化器培育中小企业、加快创新、创造就业机会的能力,反映了孵化器资源配置效果^[3]。学者对孵化器运营效率的研究主要集中在孵化运营效率指标体系构建、孵化运营效率测度和影响因素分析等方面。关于指标体系构建,我国学者多以人、财、物作为投入指标,以经济、社会效益和孵化能力作为产出指标^[4],并根据具体情境对指标进行调整,指标体系设计不一致^[5,6]。刘宁晖等(2007)选取入孵企业毕业率、人均科技成果转化率、创业环境、引进海归人员数量、在孵企业收入增长率和社会贡献6个指标,运用灰色系统理论对南京5家科技企业孵化器运行绩效进行了评价;张娇等^[3]通过构建以人财物为投入指标、以经济和社会效益为产出指标的科技企业孵化器运行效率评价模型,运用数据包络分析法对2008年我国科技企业孵化器效率进行了评价。关于孵化器运营效率测算,学者通过多种方法进行定量评价,其中数据包络分析(DEA)和随机前沿模型(SFA)应用最为广泛。代碧波等^[3]运用 DEA 模型对东北地区孵化器综合效率、纯技术效率和规模效率进行了评价;仲深等^[6]借助网络 DEA 模型,将生产过程划分为若干阶段,对中国企业孵化器分阶段效率及整体运行效率进行了评价;黄虹等^[3]利用随机前沿法对我国国家级科技孵化器运营效率进行测算,并分析了区域性差异。此外,还有学者运用 SBM 模型^[10]、三阶段 DEA 模型^[11]等进行了研究。现有研究多将孵化效率影响因素归为内部微观要素和外部宏观要素两种。在内部影响因素方面,学者从网络资源^[12]、创业导师^[13]、创新资源投入^[14]等方面进行了探讨;关于外部影响因素,政府补贴、公共支出水平、地区经济发展、人力资本积累等对孵化器运营效率的影响不容忽视^[15,16]。

1.2 孵化器空间溢出效应与收敛性

已有理论表明,外部性是空间溢出效应产生的条件^[17,18],空间溢出机制主要包括示范效应^[19]、"干中学"^[20]、空间竞争效应 ^[21]和协作效应^[22]等。当前,创新要素区域流动越来越频繁,如人才跨区流动^[23]、导师跨区交流^[24]、被孵企业毕业脱离母体等,孵化边界逐渐被打破,地区间、产业间创新溢出效应日益明显^[25]。在服务过程中,孵化器产生的溢出效应和辐射效应不仅有利于促进本地区经济发展,也对周边区域经济增长起到积极带动作用。新经济增长理论表明,空间溢出是缩小区域发展差距的重要途径,厘清溢出效应与孵化器发展的内在联系,对于滞后企业及所在区域发展具有重要意义^[26]。

当前,关于收敛性的研究主要集中在区域经济和区域创新领域,历经从新古典增长理论为基础的单一稳态绝对趋同假说到以内生增长理论为基础的多稳态条件趋同假说的发展过程。陈向东等^[27]根据内生增长理论对我国区域创新水平和区域经济收敛性进行研究,将我国划分为东部、中部、西部三大地区,发现中国区域创新水平俱乐部收敛特征不显著。然而,孙建(2010)、魏守华等(2011)针对区域创新能力收敛的研究却没有得出上述结论。现有关于区域经济增长及区域创新能力趋同的研究虽然引起学者广泛关注,但对孵化器运营效率的收敛研究较少。冯苑等^[28]采用 2007-2017 年数据对科技企业孵化器绩效的空间相关性进行研究发现,各省份孵化绩效存在空间正相关性,中国科技企业孵化器绩效虽然不存在 σ 收敛,但存在绝对 β 收敛和条件 β 收敛。

综上所述,现有研究存在以下不足:第一,关于科技企业孵化绩效,鲜有研究将空间相关性纳入考虑范围,而是将各区域单元视为"孤岛",忽略了区位条件和空间交互作用对区域经济的影响^[28,30]。第二,关于科技企业孵化器运营效率收敛,现有研究多按照东、中、西部地理区域划分,这就暗含了一种假设,即东、中、西部地区内部初始孵化创新能力相近^[27,31,32,33,34,35],因而降低了某些落后省份孵化创新能力向领先省份收敛的可能^[36]。第三,现有研究所用数据多为 2017 年之前,无法真实反映创新创业高质量发展战略制定和《科技企业孵化器管理办法》颁布后各省份企业孵化器发展现状。基于此,本文以 2016-2019 年科技部火炬中心提供的中国内地 29 个省份国家级科技企业孵化器为研究样本,对各省份科技企业孵化器进行超效率分析,比较城市群孵化运营绩效之间的差距,从全局和局部两个维度测算中国孵化效率的空间相关性,并采用探索性空间分析法对城市群间及内部孵化效率进行收敛性检验,可为缩小中国各地区孵化器运营绩效差距、提高孵化资源配置效率、优化区域孵化空间结构、推动创新型国家建设提供参考依据。

2 研究方法

2.1 科技企业孵化器运营效率测度

2.1.1 模型选取

DEA 是研究同类决策单元 (DUM) 多投入与多产出系统效率的非参数方法,具有无需事先设定生产函数具体形式、无需对不同类型量纲进行统一处理、无需提前设定指标权重等特点 [37]。由于孵化器运营较为复杂,且投入与产出具有多变量、不同量纲等特征,因此 DEA 模型对于评价孵化器运营效率具有很好的适用性。本文选取数据包络分析法中的超效率 SBM-DEA 模型测算科技企业孵化器运营效率,以避免运用 DEA 模型测算效率值只能得到有效和无效两种结果的弊端 (Andersan 等,1993),同时还能够解决变量松弛问题 (Tone, 2001)。

本文构建投入导向超效率 DEA 模型如下:

$$\begin{aligned} \min \theta &- \varepsilon \left(\sum_{i=1}^{m} s_{i}^{-} + \sum_{r=1}^{s} s_{r}^{+} \right) \\ \text{s. t...} & \begin{cases} \sum_{j=1}^{n} \lambda_{j} x_{ij} + s_{i}^{-} = \theta x_{i0} & i = 1, 2 \cdots, m \\ \sum_{j=1}^{n} \lambda_{j} y_{ij} + s_{r}^{+} = \theta y_{r0} & r = 1, 2 \cdots, s \\ \sum_{j=1}^{n} \lambda_{j} = 1 & j = 1, 2 \cdots, n \end{cases} \end{aligned}$$

$$\lambda_j, s_i^-, s_r^+ \geqslant 0 \quad j = 1, 2 \cdots, n \tag{1}$$

在模型(1)中, x_{ij} 、 y_{ij} 分别表示单元 j、要素 i 的投入与产出集合; λ_j 为第 j 个研究单元各种投入、产出要素的权重; 将第 i 种投入、第 r 种产出的松弛变量分别表示为 S_i 、 S_r , θ 为 DUM 的相对效率。

2.1.2 指标体系构建

构建科学的评价指标体系是准确测量科技企业孵化器运营效率的关键。以现有研究为基础,将孵化运营过程划分为要素投

入与产出两大部分(许治等,2019)。与其它经济系统相似,孵化器正常运营也需要投入人力、财力和物力3类资源(翁莉等,2016)。 在投入方面,高素质人力资源是提高孵化器运营效率的关键因素,本文以管理机构从业人员数、创业导师数进行衡量;孵化器财 力支持主要包括政府基金、社会资金及自有资金、考虑到指标可得性,本文选取孵化基金总额、公共技术服务平台投资总额两个 二级指标进行衡量;物力指孵化器硬件基础设施,本文以孵化器面积作为物力指标。在产出方面,孵化器以培育中小企业、促进 科技成果转化为目的,借鉴以往研究,本文从孵化能力、技术创新、经济效益和社会效益 4 个方面衡量孵化产出(Robert 等, 1988)。在借鉴现有研究的基础上,本文将孵化能力作为评价孵化器运营效率的因素层^[3],采用累计毕业企业数对其进行衡量;技 术创新采用申请知识产权件数(件)进行测量;借鉴 Smilor (1987)的研究,将经济效益纳入指标体系,本文用孵化器总收入衡量; 社会效益主要反映孵化器能提供的就业岗位数量(Bollinger等, 1983),本文用在孵企业人员数衡量。

2. 2ESDA 俱乐部划分

ESDA 分组法以空间自相关测度为核心,采用探索性空间分析法对区域进行分组,用于检验某地区孵化器运营效率是否与相 邻空间地区显著相关,进而实现区域划分(张伟丽等,2011;Gliff 等,1981)。具体包括两个步骤:首先,构建空间权重矩阵, 以反映区域间相关性,包括地理距离矩阵和经济距离矩阵;其次,测度空间自相关性并进行分组,包括全局自相关和局部自相 关,计算公式分别为:

$$Moran'sI = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (y_{i} - y) (y_{j} - y)}{S^{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}}$$

$$Local \ Moran'sI_{i} = \frac{(y_{i} - y) \sum_{j=1}^{n} W_{ij} (y_{i} - y)}{S^{2}}$$
(2)

$$Local\ Moran's I_i = \frac{(y_i - \bar{y})\sum_{j=1}^n W_{ij}(y_i - \bar{y})}{S^2}$$
(3)

在式(2)和式(3)中, v_i 代表区域i的孵化效率,n表示地区样本个数, W_i 表示地区i与地区i的加权矩阵 v_i S°分别表示区 域孵化效率的均值和方差。I 在[-1,1]区间, 当 $I \in (0,1]$ 时,表示空间正相关; 当 $I \in [-1,0)$ 时,表示空间负相关; 当 I=0 时, 表示空间不相关。

2.3 收敛性检验

本文借鉴 Barro&Sala-I-Martin 提出的绝对 β 收敛性模型^[38],将科技企业孵化器运营效率 β 收敛检验方程设定为:

$$\frac{1}{T}ln\left(\frac{y_{i,t+T}}{y_{i,t}}\right) = \alpha + \beta ln\left(y_{i,t}\right) + \varepsilon_{t} \tag{4}$$

在式(4)中, $y_{i,t}$ 、 $y_{i,t}$,分别表示第 i 个地区在第 t 年和第 t+T 年的孵化运营绩效, α 为截距项, α 为误差项, β 为收敛系 数。当 β 值为负且在统计上显著时,表明区域孵化运营效率在研究期内存在 β 收敛。

常见的空间计量模型有空间误差模型(SEM)和空间滞后模型(SLM),两种模型均将孵化器空间溢出效应考虑在内。其中,SEM 模型可以反映区域间随机误差项冲击的空间溢出效应,SLM模型则主要描述区域孵化效率受到自身发展水平和邻近区域绩效影响 的程度。

区域孵化效率 SEM 收敛模型公式如下:

$$\frac{1}{T}ln\left(\frac{y_{i,t+T}}{y_{i,t}}\right) = \alpha + \beta ln\left(y_{i,t}\right) + (1 - \gamma W)^{-1}\mu_{t} \quad (5)$$

区域孵化效率 SLM 收敛模型公式如下:

$$\frac{1}{T}ln\left(\frac{y_{i,t+T}}{y_{i,t}}\right) = \alpha + \beta ln\left(y_{i,t}\right) + \rho W ln\left(\frac{y_{i,t+T}}{y_{i,t}}\right) + \varepsilon_{t}$$
(6)

式 (5) 中, γ 为空间误差系数,反映模型残差项之间的空间相关性;式 (6) 中, ρ 为空间自回归系数,用于衡量被解释变量的空间相关性。 \mathbb{W} 为空间权重矩阵, μ_{τ} 、 ϵ_{τ} 为随机误差项。本文利用上述模型计算收敛速度 θ =-ln $(1+\beta)$ /T 和收敛半生命周期 τ =ln (2) / θ 。

3 实证检验

3.1 区域孵化运营效率测度结果

本文原始数据来源于 2017-2020 年《中国火炬统计年鉴》,以中国内地 29 个省、自治区、直辖市(考虑到数据可得性,样本未涵盖西藏、海南)国家级科技企业孵化器为研究样本,对各省市孵化器运营效率进行检验。

在样本期内,北京、江苏科技企业孵化器运营效率一直保持在前两位,河南、广东、福建、贵州等省份运营效率较为稳定,一直处于前10名,青海、江西、甘肃、内蒙古等省份一直居于低位,科技企业孵化器运营效率有待提升。另外,不同省份之间存在较大差距。例如,2016年,科技企业孵化器运营效率领先地区如北京、江苏的孵化运营效率均值分别是排名末位青海的10.62倍和14.69倍,但这种差距呈逐渐缩小趋势,2019年分别下降到2.36倍和2.24倍。在样本期内,按照区域社会经济发展程度不同,对全国各省份进行分组发现,相对于中西部地区而言,东部地区科技企业孵化器运营效率较高,创新效率平均值为1.23,中部地区为0.99,西部地区为0.95,总体上呈现"东高西低"的空间分布格局。此外,科技企业孵化器运营效率较高或较低省份呈现出一定的区域集聚特征。可以看出,东、中、西部地区科技企业孵化器孵化资源禀赋及利用能力存在差异,东部地区科技企业孵化器运营效率较高,中部和西部地区还需要进一步优化创新创业环境,提升科技企业孵化器创新创业资源利用能力。

3.2 区域科技企业孵化器运营效率空间效应检验与分组

随着国家或地区间的交流愈发频繁,地区发展不断受到周边地区经济、文化、政治的影响。传统研究一般假设研究单元同质,且空间不相关,导致采用最小二乘法(OLS)进行估计的研究结果缺乏说服力。空间计量模型通过将空间自相关和空间误差纳入收敛模型,能够解决以往传统模型忽略的复杂的空间依赖性问题。因此,本文引入莫兰指数,对中国科技企业孵化器运营效率空间相关性进行检验。

在考察期内,国家级科技企业孵化器运营效率全局莫兰指数为正,除 2018 年外,其它年份均通过显著性检验,由此拒绝了 我国各地区科技企业孵化器运营效率不存在空间依赖性的原假设。可见,区域孵化活动空间分布并非随机的,而是表现出一定的 空间正相关性,为进一步研究科技企业孵化器运营效率空间溢出效应提供了基础。

进一步,本文引入局域空间关联 Moran's I 指数,检验孵化器运营效率地理空间分布与集群特征。图 1 展示了 2016-2019 年

Moran's 散点图中各象限所覆盖的省份分布情况。结果显示,在各年份中,第一象限和第三象限覆盖了中国60%以上的省份,并且有11个省份始终位于同一象限,极有可能形成空间俱乐部收敛。其中,北京、广东、云南、广西始终位于第一象限"H-H"高高聚集区,说明该区域城市在发展阶段、资源禀赋、吸收能力等方面具有一定相似性,加之创新要素跨区域流动频繁,科技企业孵化器协同程度不断加深。青海、甘肃、内蒙古、陕西、吉林始终处于第三象限"L-L"低低聚集区,说明该组科技企业孵化器运营效率整体较低,产业配套条件有待完善,空间溢出效应不明显。山东、江西则始终处于第二象限"L-H"低高聚集区。

现有研究按照东、中、西部地区分组分析中国区域经济增长收敛,但由科技企业孵化器运营效率测度结果看,一些中西部地区省份(贵州、重庆)孵化效率比部分东部地区省份(山东)还高。因此,本文进一步计算泰尔指数,通过比较组内和组间指标差异判断不同类别划分方法的优劣势,若组内差异小、组间差异大则表示更加符合俱乐部收敛特征。通过 ESDA 法得到的分组内部差异结果小于基于传统三大地带划分得到的分组差异结果,而组间差异结果又大于传统划分组间差异结果,可见通过 ESDA 法得到的4个空间区域分组结果更加符合俱乐部收敛特征。

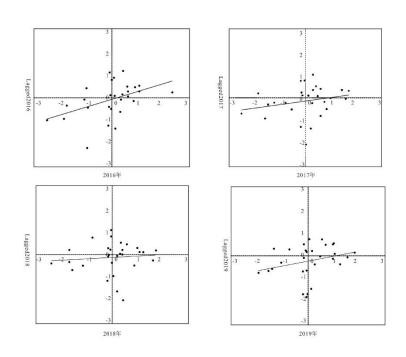


图 1 2016-2019 年莫兰指数覆盖省份

3.3 区域孵化效率俱乐部收敛性检验

本文根据收敛模型的基本原理,首先运用不考虑空间相关性约束的 OLS 法进行估计,然后运用 LM 和 R-LM 检验法作出判断。如果 LMLAG (R-LMLAG) 检验值比 LMERR (R-LMERR) 检验值更加显著,则选取 SLM 模型;反之,则选取 SEM 模型可知,H-H 组 LMERR 统计值大于 LMLAG 统计值,且显著性更高,因此适宜采用空间误差效应模型。H-L 组 RLMLAG 检验值大于 RLMERR 检验值,且显著性水平较高,说明存在空间滞后效应,适宜采用 SLM 模型。全国组、L-H 组和 L-L 组均通过空间相关性初步检验,但 LMLAG、LMERR 检验值不显著,且空间误差系数显著为 0,因此适宜采用传统 OLS 模型。

从中可见,无论是整体还是分组 β 估计值均为负数,除 L-H 组外均通过显著性检验,说明科技企业孵化器孵化运营效率低的地区比运营效率高的地区增长更快,即运营效率增长率与初始效率水平成反比。具体来说,孵化运营效率整体呈收敛趋势,β 估计值为-0.148 且通过 1%显著性水平检验,表明起步较晚地区利用后发优势学习先进地区的成功经验,有助于逐步缩小区域差距,加快实现区域协同发展。空间效应不显著表明科技企业孵化器整体运行效率逐渐趋同,各地区交流互动产生的空间溢出效应

对科技企业孵化器运营效率的趋同作用不明显,动力主要来自各地区孵化器自身发展。本文进一步采用空间数据探索性分析法对中国各省份科技企业孵化器孵化效率进行组别划分,分别采用 SEM 模型、SLM 模型对 H-H 组和 H-L 组进行收敛性检验,结果发现 β 估计值均通过 1%显著性水平检验,说明地区俱乐部收敛特征明显。同时,H-H 组和 H-L 组空间溢出效应参数 ρ 均通过 1%显著性水平检验,说明两组地区科技企业孵化器运营效率变动不仅受初始运营效率的影响,且随着人才、知识、技术等孵化资源的不断流动,也会受到周边地区孵化器运营效率空间溢出效应的影响。L-L 组在研究期内呈现出收敛趋势,在 L-H 组中 β 值虽然为负,但不显著,说明 L-H 组孵化器运营效率收敛特征不明显。本文进一步测算收敛速度和收敛半生命周期发现,全国总体收敛速度为 0.040,对应的半生命周期为 17.329 年,L-L 组收敛速度较快,达到 0.067,半生命周期为 10.414 年,H-L 组收敛速度低于全国水平,速度及半生命周期分别为 0.039、17.967 年。

4 研究结论与政策启示

4.1 研究结论

本文基于 2016-2019 年科技企业孵化器投入产出数据,构建超效率 SBM 测算模型,测度中国内地 29 个省份科技企业孵化器 运营效率,并构建空间计量模型考察中国科技企业孵化器空间溢出效应对运营效率收敛性的影响,得出如下结论:

- (1) 从整体看,2016-2019 年我国科技企业孵化器运营效率均值大于1,每年效率值超过1的省份占57.8%以上,运营效率呈整体上升趋势。从地区分布看,东部地区效率值最高,中部地区次之,西部地区最低,呈现"东强西弱"的分布格局。其中,高水平区域集中在东部地区,且形成以第一梯队江苏、北京、福建等省份为节点的高效率增长极,带动其它梯队地区不断跃迁,西部地区如甘肃、青海等还有很大提升空间。
- (2) 孵化效率呈现出一定的空间相关性。在考察期内,我国科技企业孵化器运营效率全局莫兰指数为正,且大多数年份均通过显著性检验,说明我国科技企业孵化器孵化活动空间分布并非随机的,而是呈现出一定的空间相关性;从局部莫兰指数可以看出,大部分省份集聚在第一象限和第三象限,部分地区表现出高一低、低一高聚集特征,说明随着孵化器跨区交流、孵化资源自由流动越来越频繁,地区孵化绩效不仅受本地区内部孵化资源及能力的影响,同时也会受到其它地区知识、技术和人力资本等孵化资源溢出效应的影响。
- (3) 我国科技企业孵化器运营效率整体呈收敛态势,且空间溢出效应不明显。分组检验发现,H-H 组和 H-L 组科技企业孵化器运营效率存在俱乐部收敛,且受空间溢出效应的影响;L-L 组科技企业孵化器运营效率呈收敛趋势,L-H 组运营效率收敛特征不明显。

4.2 政策启示

- (1) 从整体看,我国科技企业孵化器运营效率呈收敛趋势,但各地区空间溢出效应不明显。因此,应实施较为倾斜的科技资源布局策略,提高落后地区知识吸收、整合和创造能力,缩小其与发达地区之间的知识差距,提高科技企业孵化器运营效率。
- (2)对于处于效率收敛且具有空间溢出效应的地区来说,在维持自身快速发展的同时,还应进一步扩大区域互动范围,从更广范围积极带动其它地区孵化产业快速发展。
- (3)对于处于效率收敛但空间效应不显著的地区来说,各省份应利用由地理邻近性、"干中学"、示范效应、竞争效应带来的空间溢出效应,最大限度地发挥区域协同合作优势。运营效率较高地区企业应充分发挥孵化效率优势,在保持自身高质量发展的同时带动周边地区发展;孵化效率落后地区企业应重点吸收和借鉴先进省份的成功经验,实现省域之间的联动,形成相互促进的孵化网络。

(4)对于处于效率"低谷"且未与周边地区形成收敛趋势的地区而言,一方面,科技企业孵化器应着力提升发展内生动力,通过聘请外部创业导师、开展管理人员培训、积极申报省级与国家级孵化器等方式提升自身孵化水平,提高运营效率;另一方面,科技企业孵化器运营主管部门还应通过培育新"增长极"、优化创新创业环境等方式增强对创新要素的粘滞力,吸引更多优质创业项目"落地生根",进而提升科技企业孵化器运营效率。

参考文献:

- [1] KOCAK A, CARSRUD A, OFLAZOGLU S. Market, entrepreneurial, and technology orientations: impact on innovation and firm performance[J]. Management Decision, 2017, 55(2):248-270.
- [2] 张玲, 任晓悦, 张元杰, 等. 中国企业孵化的空间溢出效应——来自 35 个大中城市的实证研究[J]. 科技进步与对策, 2019, 36(3):48-57.
- [3] 张娇, 殷群. 我国企业孵化器运行效率差异研究——基于 DEA 及聚类分析方法[J]. 科学学与科学技术管理,2010,31(5): 171-177.
 - [4] 高洋,叶丹,张迪宣,等. 东北老工业基地创业孵化器运行效率[1]. 科学学研究, 2019, 37(7):1295-1305.
- [5]BURNETT, MCMURRAY. Exploring business incubation from a family perspective: how start-up family firms experience the incubation process in two Australian incubators[J]. Small Enterprise Research, 2008, 16(2):60-75.
 - [6] 牛玉颖, 肖建华. 智力资本视角下的科技企业孵化器绩效评价指标研究[J]. 科技进步与对策, 2013, 30(3):117-122.
- [7]代碧波,孙东生.基于 DEA 方法的科技企业孵化器运行效率评价——以东北地区 14 家国家级企业孵化器为例[J]. 科技进步与对策,2012,29(1):142-146.
 - [8]仲深,刘雨奇,杜磊.基于网络 DEA 模型的企业孵化器运行效率评价[J]. 科技管理研究,2018,38(20):84-90.
- [9] 黄虹,许跃辉. 我国科技企业孵化器运行绩效与区域差异研究——基于对 260 家国家级科技企业孵化器的实证分析[J]. 经济问题探索, 2013, 34(7):144-151.
 - [10]赵天燕,郭文. 江苏科技企业孵化器运营效率研究[J]. 江苏社会科学,2018,39(3):264-272.
- [11]宋伟,李敏思,葛章志.长江经济带科技企业孵化器效率差异比较[J].西北工业大学学报(社会科学版),2016,36(3):44-50.
- [12]MARK P RICE. Co-production of business assistance in business incubators:an exploratory study[J]. Journal of Business Venturing, 2002, 17(2):163-187.
 - [13] 冯金余. 科技企业孵化器的创新驱动效应研究[J]. 科研管理, 2017, 38(11):38-47.
- [14] COLOMBO M G, DELMASTRO M. How effective are technology incubators? evidence from Italy[J]. Research Policy, 2002.31(7):1103-1122.

- [15]王敬, 汪克夷. 我国新兴产业科技孵化器技术效率的测评与影响[J]. 财经问题研究, 2012, 34(3): 40-47.
- [16]关成华,袁祥飞.直接投资、财政补贴和税收优惠——基于全国孵化器数据的比较研究[J].北京社会科学,2018,33(8): 107-119.
- [17] BROC W A, XEPAPADEAS A, YANNACOPOULOS A N. Spatial externalities and agglomeration in a competitive industry [J]. Journal of Economic Dynamics and Control, 2014, 42:143-174.
- [18]MARIOTTI S, PISCITELLO L, ELIA S. Spatial agglomeration of multinational enterprises: the role of information externalities and knowledge spillovers[J]. Journal of Economic Geography, 2010, 10(4):519-538.
- [19]KIYOYASU TANAKA, YOSHIHIRO HASHIGUCHI. Spatial spillovers from foreign direct investment: evidence from the Yangtze River Delta in China[J]. China & World Economy, 2015, 23(2):40-60.
- [20] KENNETH J ARROW. The economic implications of learning by doing[J]. The Review of Economic Studies, 1962, 29 (3):155-173.
- [21] PORTER M E, PORTER M E. Competitive advantage: creating and sustaining superior performance [M]. Simon and Schuster, 2011.
- [22] ARI KOKKO. Technology, market characteristics, and spillovers [J]. Journal of Development Economics, 1994, 43(2):279-293.
 - [23] 闫华飞. 创业行为与产业集群发展: 考虑知识溢出效应的多案例研究[J]. 科技进步与对策, 2016, 33 (14):69-74.
- [24]LI T, FU W. Spatial processes of regional innovation in Guangdong Province, China: empirical evidence using a spatial panel data model[J]. Asian Journal of Technology Innovation, 2015, 23(3):304-320.
- [25] ELSIE, HARPER-ANDERSON, DAVID, et al. What makes business incubation work?measuring the influence of incubator quality and regional capacity on incubator outcomes[J]. Economic Development Quarterly, 2018, 32(1):60-77.
 - [26] POSNER M V. International trade and technical change[I]. Oxford Economic Papers, 1961, 13(3):323-341.
 - [27]陈向东,王磊.基于专利指标的中国区域创新的俱乐部收敛特征研究[J].中国软科学,2007,22(10):76-85.
 - [28] 冯苑, 聂长飞, 张东. 中国科技企业孵化器绩效收敛性与时空特征研究[J]. 科技进步与对策, 2020, 37(11):33-42.
- [29] STEFANO MAGRINI. Regional (di) convergence [M]//Handbook of regional and urban economics. Elsevier, 2004, 4: 2741-2796.
 - [30] 刘迎霞, 覃成林. 区域经济增长空间趋同假说研究新进展[J]. 经济学动态, 2010, 51(2):99-103.

- [31]蔡昉,都阳.中国地区经济增长的趋同与差异——对西部开发战略的启示[J]. 经济研究,2000,46(10):30-37,80.
- [32]彭国华. 我国地区经济的长期收敛性——一个新方法的应用[J]. 管理世界, 2006, 22(9):53-58.
- [33]沈坤荣,马俊.中国经济增长的"俱乐部收敛"特征及其成因研究[J]. 经济研究,2002,48(1):33-39,94-95.
- [34] 白俊红, 江可申, 李婧. 中国区域创新效率的收敛性分析[J]. 财贸经济, 2008, 29(9):119-123.
- [35]潘文卿. 中国区域经济差异与收敛[J]. 中国社会科学, 2010, 31(1):72-84, 222-223.
- [36] 黄德森,杨朝峰.基于空间效应的区域创新能力收敛性分析[J]. 软科学,2017,31(1):44-48.
- [37]魏权龄. 数据包络分析[M]. 北京: 科学出版社, 2004.